New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ralcomf | GIF version |
Description: Commutation of restricted quantifiers. (Contributed by Mario Carneiro, 14-Oct-2016.) |
Ref | Expression |
---|---|
ralcomf.1 | ⊢ ℲyA |
ralcomf.2 | ⊢ ℲxB |
Ref | Expression |
---|---|
ralcomf | ⊢ (∀x ∈ A ∀y ∈ B φ ↔ ∀y ∈ B ∀x ∈ A φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancomsimp 1369 | . . . 4 ⊢ (((x ∈ A ∧ y ∈ B) → φ) ↔ ((y ∈ B ∧ x ∈ A) → φ)) | |
2 | 1 | 2albii 1567 | . . 3 ⊢ (∀x∀y((x ∈ A ∧ y ∈ B) → φ) ↔ ∀x∀y((y ∈ B ∧ x ∈ A) → φ)) |
3 | alcom 1737 | . . 3 ⊢ (∀x∀y((y ∈ B ∧ x ∈ A) → φ) ↔ ∀y∀x((y ∈ B ∧ x ∈ A) → φ)) | |
4 | 2, 3 | bitri 240 | . 2 ⊢ (∀x∀y((x ∈ A ∧ y ∈ B) → φ) ↔ ∀y∀x((y ∈ B ∧ x ∈ A) → φ)) |
5 | ralcomf.1 | . . 3 ⊢ ℲyA | |
6 | 5 | r2alf 2650 | . 2 ⊢ (∀x ∈ A ∀y ∈ B φ ↔ ∀x∀y((x ∈ A ∧ y ∈ B) → φ)) |
7 | ralcomf.2 | . . 3 ⊢ ℲxB | |
8 | 7 | r2alf 2650 | . 2 ⊢ (∀y ∈ B ∀x ∈ A φ ↔ ∀y∀x((y ∈ B ∧ x ∈ A) → φ)) |
9 | 4, 6, 8 | 3bitr4i 268 | 1 ⊢ (∀x ∈ A ∀y ∈ B φ ↔ ∀y ∈ B ∀x ∈ A φ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∈ wcel 1710 Ⅎwnfc 2477 ∀wral 2615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 |
This theorem is referenced by: ralcom 2772 ssiinf 4016 |
Copyright terms: Public domain | W3C validator |