| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ancri | GIF version | ||
| Description: Deduction conjoining antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.) |
| Ref | Expression |
|---|---|
| ancri.1 | ⊢ (φ → ψ) |
| Ref | Expression |
|---|---|
| ancri | ⊢ (φ → (ψ ∧ φ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancri.1 | . 2 ⊢ (φ → ψ) | |
| 2 | id 19 | . 2 ⊢ (φ → φ) | |
| 3 | 1, 2 | jca 518 | 1 ⊢ (φ → (ψ ∧ φ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: truan 1331 bamalip 2324 gencbvex 2902 funmo 5126 fo00 5319 eqfnov2 5591 caovmo 5646 |
| Copyright terms: Public domain | W3C validator |