| Step | Hyp | Ref
| Expression |
| 1 | | eleq1 2413 |
. . . . 5
⊢ (w = v →
(w ∈
S ↔ v ∈ S)) |
| 2 | | oveq2 5532 |
. . . . . 6
⊢ (w = v →
(AFw) = (AFv)) |
| 3 | 2 | eqeq1d 2361 |
. . . . 5
⊢ (w = v →
((AFw) = B ↔ (AFv) = B)) |
| 4 | 1, 3 | anbi12d 691 |
. . . 4
⊢ (w = v →
((w ∈
S ∧
(AFw) = B) ↔ (v
∈ S ∧ (AFv) = B))) |
| 5 | 4 | mo4 2237 |
. . 3
⊢ (∃*w(w ∈ S ∧ (AFw) = B) ↔
∀w∀v(((w ∈ S ∧ (AFw) = B) ∧ (v ∈ S ∧ (AFv) = B)) → w =
v)) |
| 6 | | caovmo.1 |
. . . . . . . . 9
⊢ A ∈
V |
| 7 | | vex 2863 |
. . . . . . . . 9
⊢ w ∈
V |
| 8 | | vex 2863 |
. . . . . . . . 9
⊢ v ∈
V |
| 9 | | caovmo.ass |
. . . . . . . . 9
⊢ ((xFy)Fz) = (xF(yFz)) |
| 10 | 6, 7, 8, 9 | caovass 5628 |
. . . . . . . 8
⊢ ((AFw)Fv) = (AF(wFv)) |
| 11 | | caovmo.com |
. . . . . . . . 9
⊢ (xFy) = (yFx) |
| 12 | 6, 7, 8, 11, 9 | caov12 5637 |
. . . . . . . 8
⊢ (AF(wFv)) = (wF(AFv)) |
| 13 | 10, 12 | eqtri 2373 |
. . . . . . 7
⊢ ((AFw)Fv) = (wF(AFv)) |
| 14 | | oveq2 5532 |
. . . . . . . 8
⊢ ((AFv) = B →
(wF(AFv)) = (wFB)) |
| 15 | | oveq1 5531 |
. . . . . . . . . 10
⊢ (x = w →
(xFB) = (wFB)) |
| 16 | | id 19 |
. . . . . . . . . 10
⊢ (x = w →
x = w) |
| 17 | 15, 16 | eqeq12d 2367 |
. . . . . . . . 9
⊢ (x = w →
((xFB) = x ↔ (wFB) = w)) |
| 18 | | caovmo.id |
. . . . . . . . 9
⊢ (x ∈ S → (xFB) = x) |
| 19 | 17, 18 | vtoclga 2921 |
. . . . . . . 8
⊢ (w ∈ S → (wFB) = w) |
| 20 | 14, 19 | sylan9eqr 2407 |
. . . . . . 7
⊢ ((w ∈ S ∧ (AFv) = B) →
(wF(AFv)) = w) |
| 21 | 13, 20 | syl5eq 2397 |
. . . . . 6
⊢ ((w ∈ S ∧ (AFv) = B) →
((AFw)Fv) = w) |
| 22 | 21 | ad2ant2rl 729 |
. . . . 5
⊢ (((w ∈ S ∧ (AFw) = B) ∧ (v ∈ S ∧ (AFv) = B)) → ((AFw)Fv) = w) |
| 23 | | oveq1 5531 |
. . . . . . 7
⊢ ((AFw) = B →
((AFw)Fv) = (BFv)) |
| 24 | | caovmo.2 |
. . . . . . . . . 10
⊢ B ∈ S |
| 25 | 24 | elexi 2869 |
. . . . . . . . 9
⊢ B ∈
V |
| 26 | 25, 8, 11 | caovcom 5626 |
. . . . . . . 8
⊢ (BFv) = (vFB) |
| 27 | | oveq1 5531 |
. . . . . . . . . 10
⊢ (x = v →
(xFB) = (vFB)) |
| 28 | | id 19 |
. . . . . . . . . 10
⊢ (x = v →
x = v) |
| 29 | 27, 28 | eqeq12d 2367 |
. . . . . . . . 9
⊢ (x = v →
((xFB) = x ↔ (vFB) = v)) |
| 30 | 29, 18 | vtoclga 2921 |
. . . . . . . 8
⊢ (v ∈ S → (vFB) = v) |
| 31 | 26, 30 | syl5eq 2397 |
. . . . . . 7
⊢ (v ∈ S → (BFv) = v) |
| 32 | 23, 31 | sylan9eq 2405 |
. . . . . 6
⊢ (((AFw) = B ∧ v ∈ S) →
((AFw)Fv) = v) |
| 33 | 32 | ad2ant2lr 728 |
. . . . 5
⊢ (((w ∈ S ∧ (AFw) = B) ∧ (v ∈ S ∧ (AFv) = B)) → ((AFw)Fv) = v) |
| 34 | 22, 33 | eqtr3d 2387 |
. . . 4
⊢ (((w ∈ S ∧ (AFw) = B) ∧ (v ∈ S ∧ (AFv) = B)) → w =
v) |
| 35 | 34 | ax-gen 1546 |
. . 3
⊢ ∀v(((w ∈ S ∧ (AFw) = B) ∧ (v ∈ S ∧ (AFv) = B)) → w =
v) |
| 36 | 5, 35 | mpgbir 1550 |
. 2
⊢ ∃*w(w ∈ S ∧ (AFw) = B) |
| 37 | | eleq1 2413 |
. . . . . 6
⊢ ((AFw) = B →
((AFw) ∈ S ↔
B ∈
S)) |
| 38 | 24, 37 | mpbiri 224 |
. . . . 5
⊢ ((AFw) = B →
(AFw) ∈ S) |
| 39 | | caovmo.dom |
. . . . . . 7
⊢ dom F = (S ×
S) |
| 40 | | caovmo.3 |
. . . . . . 7
⊢ ¬ ∅ ∈ S |
| 41 | 7, 39, 40 | ndmovrcl 5617 |
. . . . . 6
⊢ ((AFw) ∈ S → (A
∈ S ∧ w ∈ S)) |
| 42 | 41 | simprd 449 |
. . . . 5
⊢ ((AFw) ∈ S → w ∈ S) |
| 43 | 38, 42 | syl 15 |
. . . 4
⊢ ((AFw) = B →
w ∈
S) |
| 44 | 43 | ancri 535 |
. . 3
⊢ ((AFw) = B →
(w ∈
S ∧
(AFw) = B)) |
| 45 | 44 | moimi 2251 |
. 2
⊢ (∃*w(w ∈ S ∧ (AFw) = B) →
∃*w(AFw) = B) |
| 46 | 36, 45 | ax-mp 5 |
1
⊢ ∃*w(AFw) = B |