NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  truan GIF version

Theorem truan 1331
Description: True can be removed from a conjunction. (Contributed by FL, 20-Mar-2011.)
Assertion
Ref Expression
truan (( ⊤ φ) ↔ φ)

Proof of Theorem truan
StepHypRef Expression
1 simpr 447 . 2 (( ⊤ φ) → φ)
2 a1tru 1330 . . 3 (φ → ⊤ )
32ancri 535 . 2 (φ → ( ⊤ φ))
41, 3impbii 180 1 (( ⊤ φ) ↔ φ)
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358  wtru 1316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator