New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ancld | GIF version |
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
Ref | Expression |
---|---|
ancld.1 | ⊢ (φ → (ψ → χ)) |
Ref | Expression |
---|---|
ancld | ⊢ (φ → (ψ → (ψ ∧ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 21 | . 2 ⊢ (φ → (ψ → ψ)) | |
2 | ancld.1 | . 2 ⊢ (φ → (ψ → χ)) | |
3 | 1, 2 | jcad 519 | 1 ⊢ (φ → (ψ → (ψ ∧ χ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: mopick2 2271 cgsexg 2891 cgsex2g 2892 cgsex4g 2893 reximdva0 3562 difsn 3846 preq12b 4128 nnpw1ex 4485 tfin11 4494 vinf 4556 dmcosseq 4974 ssreseq 4998 fnoprabg 5586 dmfrec 6317 |
Copyright terms: Public domain | W3C validator |