New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > anidmdbi | GIF version |
Description: Conjunction idempotence with antecedent. (Contributed by Roy F. Longton, 8-Aug-2005.) |
Ref | Expression |
---|---|
anidmdbi | ⊢ ((φ → (ψ ∧ ψ)) ↔ (φ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anidm 625 | . 2 ⊢ ((ψ ∧ ψ) ↔ ψ) | |
2 | 1 | imbi2i 303 | 1 ⊢ ((φ → (ψ ∧ ψ)) ↔ (φ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: nanim 1292 |
Copyright terms: Public domain | W3C validator |