NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nanim GIF version

Theorem nanim 1292
Description: Show equivalence between implication and the Nicod version. To derive nic-dfim 1434, apply nanbi 1294. (Contributed by Jeff Hoffman, 19-Nov-2007.)
Assertion
Ref Expression
nanim ((φψ) ↔ (φ (ψ ψ)))

Proof of Theorem nanim
StepHypRef Expression
1 nannan 1291 . 2 ((φ (ψ ψ)) ↔ (φ → (ψ ψ)))
2 anidmdbi 627 . 2 ((φ → (ψ ψ)) ↔ (φψ))
31, 2bitr2i 241 1 ((φψ) ↔ (φ (ψ ψ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358   wnan 1287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-nan 1288
This theorem is referenced by:  nic-dfim  1434  nic-ax  1438
  Copyright terms: Public domain W3C validator