New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > anidm | GIF version |
Description: Idempotent law for conjunction. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Mar-2014.) |
Ref | Expression |
---|---|
anidm | ⊢ ((φ ∧ φ) ↔ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.24 624 | . 2 ⊢ (φ ↔ (φ ∧ φ)) | |
2 | 1 | bicomi 193 | 1 ⊢ ((φ ∧ φ) ↔ φ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: anidmdbi 627 anandi 801 anandir 802 nannot 1293 truantru 1336 falanfal 1339 nic-axALT 1439 sbnf2 2108 2eu4 2287 elcomplg 3219 inidm 3465 ncfinlower 4484 nnpw1ex 4485 nnpweq 4524 phialllem1 4617 xp11 5057 fununi 5161 |
Copyright terms: Public domain | W3C validator |