New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ax11b | GIF version |
Description: A bidirectional version of ax11o 1994. (Contributed by NM, 30-Jun-2006.) |
Ref | Expression |
---|---|
ax11b | ⊢ ((¬ ∀x x = y ∧ x = y) → (φ ↔ ∀x(x = y → φ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax11o 1994 | . . 3 ⊢ (¬ ∀x x = y → (x = y → (φ → ∀x(x = y → φ)))) | |
2 | 1 | imp 418 | . 2 ⊢ ((¬ ∀x x = y ∧ x = y) → (φ → ∀x(x = y → φ))) |
3 | sp 1747 | . . . 4 ⊢ (∀x(x = y → φ) → (x = y → φ)) | |
4 | 3 | com12 27 | . . 3 ⊢ (x = y → (∀x(x = y → φ) → φ)) |
5 | 4 | adantl 452 | . 2 ⊢ ((¬ ∀x x = y ∧ x = y) → (∀x(x = y → φ) → φ)) |
6 | 2, 5 | impbid 183 | 1 ⊢ ((¬ ∀x x = y ∧ x = y) → (φ ↔ ∀x(x = y → φ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |