NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  equs5 GIF version

Theorem equs5 1996
Description: Lemma used in proofs of substitution properties. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equs5 x x = y → (x(x = y φ) → x(x = yφ)))

Proof of Theorem equs5
StepHypRef Expression
1 nfnae 1956 . 2 x ¬ x x = y
2 nfa1 1788 . 2 xx(x = yφ)
3 ax11o 1994 . . 3 x x = y → (x = y → (φx(x = yφ))))
43imp3a 420 . 2 x x = y → ((x = y φ) → x(x = yφ)))
51, 2, 4exlimd 1806 1 x x = y → (x(x = y φ) → x(x = yφ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545
This theorem is referenced by:  sb3  2052  sb4  2053
  Copyright terms: Public domain W3C validator