New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > equs5 | GIF version |
Description: Lemma used in proofs of substitution properties. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equs5 | ⊢ (¬ ∀x x = y → (∃x(x = y ∧ φ) → ∀x(x = y → φ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnae 1956 | . 2 ⊢ Ⅎx ¬ ∀x x = y | |
2 | nfa1 1788 | . 2 ⊢ Ⅎx∀x(x = y → φ) | |
3 | ax11o 1994 | . . 3 ⊢ (¬ ∀x x = y → (x = y → (φ → ∀x(x = y → φ)))) | |
4 | 3 | imp3a 420 | . 2 ⊢ (¬ ∀x x = y → ((x = y ∧ φ) → ∀x(x = y → φ))) |
5 | 1, 2, 4 | exlimd 1806 | 1 ⊢ (¬ ∀x x = y → (∃x(x = y ∧ φ) → ∀x(x = y → φ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 |
This theorem is referenced by: sb3 2052 sb4 2053 |
Copyright terms: Public domain | W3C validator |