NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ax67 GIF version

Theorem ax67 2165
Description: Proof of a single axiom that can replace both ax-6o 2137 and ax-7 1734. See ax67to6 2167 and ax67to7 2168 for the re-derivation of those axioms. (Contributed by NM, 18-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax67 x ¬ yxφyφ)

Proof of Theorem ax67
StepHypRef Expression
1 ax-7 1734 . . . . 5 (yxφxyφ)
21con3i 127 . . . 4 xyφ → ¬ yxφ)
32alimi 1559 . . 3 (x ¬ xyφx ¬ yxφ)
43con3i 127 . 2 x ¬ yxφ → ¬ x ¬ xyφ)
5 ax-6o 2137 . 2 x ¬ xyφyφ)
64, 5syl 15 1 x ¬ yxφyφ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-7 1734  ax-6o 2137
This theorem is referenced by:  ax67to6  2167  ax67to7  2168
  Copyright terms: Public domain W3C validator