New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > con3i | GIF version |
Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 20-Jun-2013.) |
Ref | Expression |
---|---|
con3i.a | ⊢ (φ → ψ) |
Ref | Expression |
---|---|
con3i | ⊢ (¬ ψ → ¬ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ (¬ ψ → ¬ ψ) | |
2 | con3i.a | . 2 ⊢ (φ → ψ) | |
3 | 1, 2 | nsyl 113 | 1 ⊢ (¬ ψ → ¬ φ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.51 145 pm2.65i 165 pm5.21ni 341 pm2.45 386 pm2.46 387 pm5.14 856 con3th 924 cadan 1392 rb-ax2 1518 rb-ax4 1520 equidOLD 1677 hbn1fw 1705 spOLD 1748 hbnOLD 1777 spimehOLD 1821 cbv3hvOLD 1851 ax12 1935 dvelimv 1939 ax9 1949 sbn 2062 sbcom 2089 ax12from12o 2156 ax67 2165 ax67to6 2167 ax467to6 2171 equidqe 2173 equidq 2175 ax11indalem 2197 euor2 2272 moexex 2273 baroco 2310 necon1bi 2560 eueq3 3012 sbc2or 3055 difrab 3530 abvor0 3568 ifeqor 3700 ifan 3702 nelpri 3755 setswith 4322 eqtfinrelk 4487 dfphi2 4570 mosubopt 4613 phialllem2 4618 imasn 5019 dmsnopss 5068 fvprc 5326 tz6.12-2 5347 ndmfv 5350 nfvres 5353 fvopab4ndm 5391 ressnop0 5437 ndmovass 5619 ndmovdistr 5620 fvmptex 5722 clos1nrel 5887 ncprc 6125 frecxp 6315 |
Copyright terms: Public domain | W3C validator |