New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ax67to6 | GIF version |
Description: Re-derivation of ax-6o 2137 from ax67 2165. Note that ax-6o 2137 and ax-7 1734 are not used by the re-derivation. (Contributed by NM, 18-Nov-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax67to6 | ⊢ (¬ ∀x ¬ ∀xφ → φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hba1-o 2149 | . . . . 5 ⊢ (∀xφ → ∀x∀xφ) | |
2 | 1 | con3i 127 | . . . 4 ⊢ (¬ ∀x∀xφ → ¬ ∀xφ) |
3 | 2 | alimi 1559 | . . 3 ⊢ (∀x ¬ ∀x∀xφ → ∀x ¬ ∀xφ) |
4 | 3 | con3i 127 | . 2 ⊢ (¬ ∀x ¬ ∀xφ → ¬ ∀x ¬ ∀x∀xφ) |
5 | ax67 2165 | . 2 ⊢ (¬ ∀x ¬ ∀x∀xφ → ∀xφ) | |
6 | ax-4 2135 | . 2 ⊢ (∀xφ → φ) | |
7 | 4, 5, 6 | 3syl 18 | 1 ⊢ (¬ ∀x ¬ ∀xφ → φ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-7 1734 ax-4 2135 ax-5o 2136 ax-6o 2137 |
This theorem is referenced by: ax67to7 2168 |
Copyright terms: Public domain | W3C validator |