NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  axial GIF version

Theorem axial 2327
Description: x is not free in xφ (intuitionistic logic axiom ax-ial). (Contributed by Jim Kingdon, 31-Dec-2017.)
Assertion
Ref Expression
axial (xφxxφ)

Proof of Theorem axial
StepHypRef Expression
1 hba1 1786 1 (xφxxφ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator