| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > hba1 | GIF version | ||
| Description: x is not free in ∀xφ. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 15-Dec-2017.) |
| Ref | Expression |
|---|---|
| hba1 | ⊢ (∀xφ → ∀x∀xφ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbe1 1731 | . . 3 ⊢ (∃x ¬ φ → ∀x∃x ¬ φ) | |
| 2 | 1 | hbn 1776 | . 2 ⊢ (¬ ∃x ¬ φ → ∀x ¬ ∃x ¬ φ) |
| 3 | alex 1572 | . 2 ⊢ (∀xφ ↔ ¬ ∃x ¬ φ) | |
| 4 | 3 | albii 1566 | . 2 ⊢ (∀x∀xφ ↔ ∀x ¬ ∃x ¬ φ) |
| 5 | 2, 3, 4 | 3imtr4i 257 | 1 ⊢ (∀xφ → ∀x∀xφ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1540 ∃wex 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
| This theorem depends on definitions: df-bi 177 df-ex 1542 |
| This theorem is referenced by: nfa1 1788 spimehOLD 1821 19.21hOLD 1840 19.12OLD 1848 cbv3hvOLD 1851 nfald 1852 ax12olem5 1931 ax10lem4 1941 ax9 1949 dvelimh 1964 axi5r 2326 axial 2327 hbra1 2664 |
| Copyright terms: Public domain | W3C validator |