NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  axi5r GIF version

Theorem axi5r 2326
Description: Converse of ax-5o (intuitionistic logic axiom ax-i5r). (Contributed by Jim Kingdon, 31-Dec-2017.)
Assertion
Ref Expression
axi5r ((xφxψ) → x(xφψ))

Proof of Theorem axi5r
StepHypRef Expression
1 hba1 1786 . . 3 (xφxxφ)
2 hba1 1786 . . 3 (xψxxψ)
31, 2hbim 1817 . 2 ((xφxψ) → x(xφxψ))
4 sp 1747 . . . 4 (xψψ)
54imim2i 13 . . 3 ((xφxψ) → (xφψ))
65alimi 1559 . 2 (x(xφxψ) → x(xφψ))
73, 6syl 15 1 ((xφxψ) → x(xφψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-11 1746
This theorem depends on definitions:  df-bi 177  df-ex 1542  df-nf 1545
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator