New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > axie2 | GIF version |
Description: A key property of existential quantification (intuitionistic logic axiom ax-ie2). (Contributed by Jim Kingdon, 31-Dec-2017.) |
Ref | Expression |
---|---|
axie2 | ⊢ (∀x(ψ → ∀xψ) → (∀x(φ → ψ) ↔ (∃xφ → ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nf 1545 | . 2 ⊢ (Ⅎxψ ↔ ∀x(ψ → ∀xψ)) | |
2 | 19.23t 1800 | . 2 ⊢ (Ⅎxψ → (∀x(φ → ψ) ↔ (∃xφ → ψ))) | |
3 | 1, 2 | sylbir 204 | 1 ⊢ (∀x(ψ → ∀xψ) → (∀x(φ → ψ) ↔ (∃xφ → ψ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 Ⅎwnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |