New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylbir | GIF version |
Description: A mixed syllogism inference from a biconditional and an implication. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sylbir.1 | ⊢ (ψ ↔ φ) |
sylbir.2 | ⊢ (ψ → χ) |
Ref | Expression |
---|---|
sylbir | ⊢ (φ → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylbir.1 | . . 3 ⊢ (ψ ↔ φ) | |
2 | 1 | biimpri 197 | . 2 ⊢ (φ → ψ) |
3 | sylbir.2 | . 2 ⊢ (ψ → χ) | |
4 | 2, 3 | syl 15 | 1 ⊢ (φ → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: 3imtr3i 256 ex 423 3ori 1242 19.38 1794 ax12olem5 1931 sbi2 2064 sb5rf 2090 ax11eq 2193 ax11el 2194 mo 2226 mo2 2233 2mo 2282 axie2 2329 bm1.1 2338 necon1i 2561 sbhypf 2905 vtocl2 2911 vtocl3 2912 reu6 3026 uneqin 3507 inelcm 3606 difin0ss 3617 difprsn1 3848 unissint 3951 intminss 3953 iununi 4051 pw10b 4167 iotanul 4355 peano5 4410 elsuci 4415 nndisjeq 4430 nnceleq 4431 tfin11 4494 sfinltfin 4536 copsex2g 4610 opelopabsb 4698 opelopabt 4700 opelrn 4962 elimasn 5020 xpnz 5046 ssxpb 5056 funcnvres2 5168 tz6.12 5346 fnfvrnss 5430 fressnfv 5440 fconst5 5456 fconstfv 5457 ovidig 5594 ovres 5603 ovconst2 5612 oprssdm 5613 ndmovcl 5615 fvfullfun 5865 ecopqsi 5982 ncaddccl 6145 nceleq 6150 dflec3 6222 lenc 6224 letc 6232 |
Copyright terms: Public domain | W3C validator |