| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > bibi1 | GIF version | ||
| Description: Theorem *4.86 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) | 
| Ref | Expression | 
|---|---|
| bibi1 | ⊢ ((φ ↔ ψ) → ((φ ↔ χ) ↔ (ψ ↔ χ))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ ((φ ↔ ψ) → (φ ↔ ψ)) | |
| 2 | 1 | bibi1d 310 | 1 ⊢ ((φ ↔ ψ) → ((φ ↔ χ) ↔ (ψ ↔ χ))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 176 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 | 
| This theorem is referenced by: bitr 689 sbeqalb 3099 | 
| Copyright terms: Public domain | W3C validator |