New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > con2bi | GIF version |
Description: Contraposition. Theorem *4.12 of [WhiteheadRussell] p. 117. (Contributed by NM, 15-Apr-1995.) (Proof shortened by Wolf Lammen, 3-Jan-2013.) |
Ref | Expression |
---|---|
con2bi | ⊢ ((φ ↔ ¬ ψ) ↔ (ψ ↔ ¬ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notbi 286 | . 2 ⊢ ((φ ↔ ¬ ψ) ↔ (¬ φ ↔ ¬ ¬ ψ)) | |
2 | notnot 282 | . . 3 ⊢ (ψ ↔ ¬ ¬ ψ) | |
3 | 2 | bibi2i 304 | . 2 ⊢ ((¬ φ ↔ ψ) ↔ (¬ φ ↔ ¬ ¬ ψ)) |
4 | bicom 191 | . 2 ⊢ ((¬ φ ↔ ψ) ↔ (ψ ↔ ¬ φ)) | |
5 | 1, 3, 4 | 3bitr2i 264 | 1 ⊢ ((φ ↔ ¬ ψ) ↔ (ψ ↔ ¬ φ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: con2bid 319 nbbn 347 |
Copyright terms: Public domain | W3C validator |