New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbeqalb | GIF version |
Description: Theorem *14.121 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 28-Jun-2011.) (Proof shortened by Wolf Lammen, 9-May-2013.) |
Ref | Expression |
---|---|
sbeqalb | ⊢ (A ∈ V → ((∀x(φ ↔ x = A) ∧ ∀x(φ ↔ x = B)) → A = B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bibi1 317 | . . . . 5 ⊢ ((φ ↔ x = A) → ((φ ↔ x = B) ↔ (x = A ↔ x = B))) | |
2 | 1 | biimpa 470 | . . . 4 ⊢ (((φ ↔ x = A) ∧ (φ ↔ x = B)) → (x = A ↔ x = B)) |
3 | 2 | biimpd 198 | . . 3 ⊢ (((φ ↔ x = A) ∧ (φ ↔ x = B)) → (x = A → x = B)) |
4 | 3 | alanimi 1562 | . 2 ⊢ ((∀x(φ ↔ x = A) ∧ ∀x(φ ↔ x = B)) → ∀x(x = A → x = B)) |
5 | sbceqal 3098 | . 2 ⊢ (A ∈ V → (∀x(x = A → x = B) → A = B)) | |
6 | 4, 5 | syl5 28 | 1 ⊢ (A ∈ V → ((∀x(φ ↔ x = A) ∧ ∀x(φ ↔ x = B)) → A = B)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 = wceq 1642 ∈ wcel 1710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 |
This theorem is referenced by: iotaval 4351 |
Copyright terms: Public domain | W3C validator |