New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > bitr | GIF version |
Description: Theorem *4.22 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.) |
Ref | Expression |
---|---|
bitr | ⊢ (((φ ↔ ψ) ∧ (ψ ↔ χ)) → (φ ↔ χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bibi1 317 | . 2 ⊢ ((φ ↔ ψ) → ((φ ↔ χ) ↔ (ψ ↔ χ))) | |
2 | 1 | biimpar 471 | 1 ⊢ (((φ ↔ ψ) ∧ (ψ ↔ χ)) → (φ ↔ χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: opelopabt 4700 |
Copyright terms: Public domain | W3C validator |