NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  bitr GIF version

Theorem bitr 689
Description: Theorem *4.22 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
bitr (((φψ) (ψχ)) → (φχ))

Proof of Theorem bitr
StepHypRef Expression
1 bibi1 317 . 2 ((φψ) → ((φχ) ↔ (ψχ)))
21biimpar 471 1 (((φψ) (ψχ)) → (φχ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  opelopabt  4700
  Copyright terms: Public domain W3C validator