| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > bitr | GIF version | ||
| Description: Theorem *4.22 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| bitr | ⊢ (((φ ↔ ψ) ∧ (ψ ↔ χ)) → (φ ↔ χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bibi1 317 | . 2 ⊢ ((φ ↔ ψ) → ((φ ↔ χ) ↔ (ψ ↔ χ))) | |
| 2 | 1 | biimpar 471 | 1 ⊢ (((φ ↔ ψ) ∧ (ψ ↔ χ)) → (φ ↔ χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: opelopabt 4700 |
| Copyright terms: Public domain | W3C validator |