New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > bibi1d | GIF version |
Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imbid.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
bibi1d | ⊢ (φ → ((ψ ↔ θ) ↔ (χ ↔ θ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbid.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | bibi2d 309 | . 2 ⊢ (φ → ((θ ↔ ψ) ↔ (θ ↔ χ))) |
3 | bicom 191 | . 2 ⊢ ((ψ ↔ θ) ↔ (θ ↔ ψ)) | |
4 | bicom 191 | . 2 ⊢ ((χ ↔ θ) ↔ (θ ↔ χ)) | |
5 | 2, 3, 4 | 3bitr4g 279 | 1 ⊢ (φ → ((ψ ↔ θ) ↔ (χ ↔ θ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: bibi12d 312 bibi1 317 biass 348 eubid 2211 axext3 2336 bm1.1 2338 eqeq1 2359 pm13.183 2980 elabgt 2983 mob 3019 sbctt 3109 sbcabel 3124 br1stg 4731 isoeq2 5484 extd 5924 |
Copyright terms: Public domain | W3C validator |