NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  bibi1d GIF version

Theorem bibi1d 310
Description: Deduction adding a biconditional to the right in an equivalence. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
imbid.1 (φ → (ψχ))
Assertion
Ref Expression
bibi1d (φ → ((ψθ) ↔ (χθ)))

Proof of Theorem bibi1d
StepHypRef Expression
1 imbid.1 . . 3 (φ → (ψχ))
21bibi2d 309 . 2 (φ → ((θψ) ↔ (θχ)))
3 bicom 191 . 2 ((ψθ) ↔ (θψ))
4 bicom 191 . 2 ((χθ) ↔ (θχ))
52, 3, 43bitr4g 279 1 (φ → ((ψθ) ↔ (χθ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  bibi12d  312  bibi1  317  biass  348  eubid  2211  axext3  2336  bm1.1  2338  eqeq1  2359  pm13.183  2980  elabgt  2983  mob  3019  sbctt  3109  sbcabel  3124  br1stg  4731  isoeq2  5484  extd  5924
  Copyright terms: Public domain W3C validator