| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > opelopabt | GIF version | ||
| Description: Closed theorem form of opelopab 4709. (Contributed by NM, 19-Feb-2013.) |
| Ref | Expression |
|---|---|
| opelopabt | ⊢ ((∀x∀y(x = A → (φ ↔ ψ)) ∧ ∀x∀y(y = B → (ψ ↔ χ)) ∧ (A ∈ V ∧ B ∈ W)) → (〈A, B〉 ∈ {〈x, y〉 ∣ φ} ↔ χ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elopab 4697 | . 2 ⊢ (〈A, B〉 ∈ {〈x, y〉 ∣ φ} ↔ ∃x∃y(〈A, B〉 = 〈x, y〉 ∧ φ)) | |
| 2 | 19.26-2 1594 | . . . . 5 ⊢ (∀x∀y((x = A → (φ ↔ ψ)) ∧ (y = B → (ψ ↔ χ))) ↔ (∀x∀y(x = A → (φ ↔ ψ)) ∧ ∀x∀y(y = B → (ψ ↔ χ)))) | |
| 3 | prth 554 | . . . . . . 7 ⊢ (((x = A → (φ ↔ ψ)) ∧ (y = B → (ψ ↔ χ))) → ((x = A ∧ y = B) → ((φ ↔ ψ) ∧ (ψ ↔ χ)))) | |
| 4 | bitr 689 | . . . . . . 7 ⊢ (((φ ↔ ψ) ∧ (ψ ↔ χ)) → (φ ↔ χ)) | |
| 5 | 3, 4 | syl6 29 | . . . . . 6 ⊢ (((x = A → (φ ↔ ψ)) ∧ (y = B → (ψ ↔ χ))) → ((x = A ∧ y = B) → (φ ↔ χ))) |
| 6 | 5 | 2alimi 1560 | . . . . 5 ⊢ (∀x∀y((x = A → (φ ↔ ψ)) ∧ (y = B → (ψ ↔ χ))) → ∀x∀y((x = A ∧ y = B) → (φ ↔ χ))) |
| 7 | 2, 6 | sylbir 204 | . . . 4 ⊢ ((∀x∀y(x = A → (φ ↔ ψ)) ∧ ∀x∀y(y = B → (ψ ↔ χ))) → ∀x∀y((x = A ∧ y = B) → (φ ↔ χ))) |
| 8 | copsex2t 4609 | . . . 4 ⊢ ((∀x∀y((x = A ∧ y = B) → (φ ↔ χ)) ∧ (A ∈ V ∧ B ∈ W)) → (∃x∃y(〈A, B〉 = 〈x, y〉 ∧ φ) ↔ χ)) | |
| 9 | 7, 8 | sylan 457 | . . 3 ⊢ (((∀x∀y(x = A → (φ ↔ ψ)) ∧ ∀x∀y(y = B → (ψ ↔ χ))) ∧ (A ∈ V ∧ B ∈ W)) → (∃x∃y(〈A, B〉 = 〈x, y〉 ∧ φ) ↔ χ)) |
| 10 | 9 | 3impa 1146 | . 2 ⊢ ((∀x∀y(x = A → (φ ↔ ψ)) ∧ ∀x∀y(y = B → (ψ ↔ χ)) ∧ (A ∈ V ∧ B ∈ W)) → (∃x∃y(〈A, B〉 = 〈x, y〉 ∧ φ) ↔ χ)) |
| 11 | 1, 10 | syl5bb 248 | 1 ⊢ ((∀x∀y(x = A → (φ ↔ ψ)) ∧ ∀x∀y(y = B → (ψ ↔ χ)) ∧ (A ∈ V ∧ B ∈ W)) → (〈A, B〉 ∈ {〈x, y〉 ∣ φ} ↔ χ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 ∀wal 1540 ∃wex 1541 = wceq 1642 ∈ wcel 1710 〈cop 4562 {copab 4623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 |
| This theorem is referenced by: fvopab4t 5386 |
| Copyright terms: Public domain | W3C validator |