![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > biimpar | GIF version |
Description: Inference from a logical equivalence. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
biimpa.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
biimpar | ⊢ ((φ ∧ χ) → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biimpa.1 | . . 3 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | biimprd 214 | . 2 ⊢ (φ → (χ → ψ)) |
3 | 2 | imp 418 | 1 ⊢ ((φ ∧ χ) → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: exbiri 605 bitr 689 oplem1 930 eqtr 2370 funfni 5183 fnco 5191 fnssres 5196 fnimadisj 5203 foco 5279 f1ores 5300 foimacnv 5303 fvelimab 5370 dff3 5420 dffo4 5423 f1o2d 5727 ecelqsg 5979 elqsn0 5993 peano4nc 6150 ncspw1eu 6159 ce0addcnnul 6179 sbth 6206 dflec2 6210 ce0lenc1 6239 ncfin 6247 |
Copyright terms: Public domain | W3C validator |