New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 2th | GIF version |
Description: Two truths are equivalent. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
2th.1 | ⊢ φ |
2th.2 | ⊢ ψ |
Ref | Expression |
---|---|
2th | ⊢ (φ ↔ ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2th.2 | . . 3 ⊢ ψ | |
2 | 1 | a1i 10 | . 2 ⊢ (φ → ψ) |
3 | 2th.1 | . . 3 ⊢ φ | |
4 | 3 | a1i 10 | . 2 ⊢ (ψ → φ) |
5 | 2, 4 | impbii 180 | 1 ⊢ (φ ↔ ψ) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: 2false 339 trujust 1318 bitru 1326 exiftruOLD 1658 pm11.07 2115 vjust 2861 dfnul2 3553 dfnul3 3554 rab0 3572 pwv 3887 int0 3941 0iin 4025 |
Copyright terms: Public domain | W3C validator |