New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > had1 | GIF version |
Description: If the first parameter is true, the half adder is equivalent to the equality of the other two inputs. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
had1 | ⊢ (φ → (hadd(φ, ψ, χ) ↔ (ψ ↔ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hadbi 1387 | . . 3 ⊢ (hadd(φ, ψ, χ) ↔ ((φ ↔ ψ) ↔ χ)) | |
2 | biass 348 | . . 3 ⊢ (((φ ↔ ψ) ↔ χ) ↔ (φ ↔ (ψ ↔ χ))) | |
3 | 1, 2 | bitri 240 | . 2 ⊢ (hadd(φ, ψ, χ) ↔ (φ ↔ (ψ ↔ χ))) |
4 | id 19 | . . . 4 ⊢ (φ → φ) | |
5 | biidd 228 | . . . 4 ⊢ (φ → ((ψ ↔ χ) ↔ (ψ ↔ χ))) | |
6 | 4, 5 | 2thd 231 | . . 3 ⊢ (φ → (φ ↔ ((ψ ↔ χ) ↔ (ψ ↔ χ)))) |
7 | biass 348 | . . 3 ⊢ (((φ ↔ (ψ ↔ χ)) ↔ (ψ ↔ χ)) ↔ (φ ↔ ((ψ ↔ χ) ↔ (ψ ↔ χ)))) | |
8 | 6, 7 | sylibr 203 | . 2 ⊢ (φ → ((φ ↔ (ψ ↔ χ)) ↔ (ψ ↔ χ))) |
9 | 3, 8 | syl5bb 248 | 1 ⊢ (φ → (hadd(φ, ψ, χ) ↔ (ψ ↔ χ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 haddwhad 1378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-xor 1305 df-had 1380 |
This theorem is referenced by: had0 1403 |
Copyright terms: Public domain | W3C validator |