Step | Hyp | Ref
| Expression |
1 | | elex 2868 |
. 2
⊢ (A ∈ V → A ∈ V) |
2 | | elex 2868 |
. 2
⊢ (B ∈ W → B ∈ V) |
3 | | opkelxpkg 4248 |
. . . . . 6
⊢ ((A ∈ V ∧ B ∈ V) → (⟪A, B⟫
∈ (V ×k V) ↔
(A ∈ V
∧ B ∈ V))) |
4 | 3 | ibir 233 |
. . . . 5
⊢ ((A ∈ V ∧ B ∈ V) → ⟪A, B⟫
∈ (V ×k
V)) |
5 | 4 | biantrurd 494 |
. . . 4
⊢ ((A ∈ V ∧ B ∈ V) → (¬ ⟪A, B⟫
∈ (( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)) “k ℘1℘11c) ↔
(⟪A, B⟫ ∈ (V
×k V) ∧ ¬
⟪A, B⟫ ∈ ((
Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)) “k ℘1℘11c)))) |
6 | | exnal 1574 |
. . . . . 6
⊢ (∃x ¬
(x ∈
B ↔ x ∈ (C “k A)) ↔ ¬ ∀x(x ∈ B ↔ x ∈ (C
“k A))) |
7 | | opkex 4114 |
. . . . . . . . 9
⊢ ⟪A, B⟫
∈ V |
8 | 7 | elimak 4260 |
. . . . . . . 8
⊢ (⟪A, B⟫
∈ (( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)) “k ℘1℘11c) ↔ ∃y ∈ ℘1
℘11c⟪y, ⟪A,
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C))) |
9 | | df-rex 2621 |
. . . . . . . 8
⊢ (∃y ∈ ℘1
℘11c⟪y, ⟪A,
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)) ↔ ∃y(y ∈ ℘1℘11c ∧ ⟪y,
⟪A, B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)))) |
10 | | elpw121c 4149 |
. . . . . . . . . . . 12
⊢ (y ∈ ℘1℘11c ↔ ∃x y = {{{x}}}) |
11 | 10 | anbi1i 676 |
. . . . . . . . . . 11
⊢ ((y ∈ ℘1℘11c ∧ ⟪y,
⟪A, B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C))) ↔ (∃x y = {{{x}}}
∧ ⟪y, ⟪A,
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)))) |
12 | | 19.41v 1901 |
. . . . . . . . . . 11
⊢ (∃x(y = {{{x}}}
∧ ⟪y, ⟪A,
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C))) ↔ (∃x y = {{{x}}}
∧ ⟪y, ⟪A,
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)))) |
13 | 11, 12 | bitr4i 243 |
. . . . . . . . . 10
⊢ ((y ∈ ℘1℘11c ∧ ⟪y,
⟪A, B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C))) ↔ ∃x(y = {{{x}}}
∧ ⟪y, ⟪A,
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)))) |
14 | 13 | exbii 1582 |
. . . . . . . . 9
⊢ (∃y(y ∈ ℘1℘11c ∧ ⟪y,
⟪A, B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C))) ↔ ∃y∃x(y = {{{x}}}
∧ ⟪y, ⟪A,
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)))) |
15 | | excom 1741 |
. . . . . . . . 9
⊢ (∃y∃x(y = {{{x}}}
∧ ⟪y, ⟪A,
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C))) ↔ ∃x∃y(y = {{{x}}}
∧ ⟪y, ⟪A,
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)))) |
16 | | snex 4112 |
. . . . . . . . . . 11
⊢ {{{x}}} ∈
V |
17 | | opkeq1 4060 |
. . . . . . . . . . . 12
⊢ (y = {{{x}}}
→ ⟪y, ⟪A, B⟫⟫ = ⟪{{{x}}}, ⟪A,
B⟫⟫) |
18 | 17 | eleq1d 2419 |
. . . . . . . . . . 11
⊢ (y = {{{x}}}
→ (⟪y, ⟪A, B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)) ↔ ⟪{{{x}}}, ⟪A,
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)))) |
19 | 16, 18 | ceqsexv 2895 |
. . . . . . . . . 10
⊢ (∃y(y = {{{x}}}
∧ ⟪y, ⟪A,
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C))) ↔ ⟪{{{x}}}, ⟪A,
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C))) |
20 | 19 | exbii 1582 |
. . . . . . . . 9
⊢ (∃x∃y(y = {{{x}}}
∧ ⟪y, ⟪A,
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C))) ↔ ∃x⟪{{{x}}}, ⟪A,
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C))) |
21 | 14, 15, 20 | 3bitri 262 |
. . . . . . . 8
⊢ (∃y(y ∈ ℘1℘11c ∧ ⟪y,
⟪A, B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C))) ↔ ∃x⟪{{{x}}}, ⟪A,
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C))) |
22 | 8, 9, 21 | 3bitri 262 |
. . . . . . 7
⊢ (⟪A, B⟫
∈ (( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)) “k ℘1℘11c) ↔ ∃x⟪{{{x}}}, ⟪A,
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C))) |
23 | | elsymdif 3224 |
. . . . . . . . 9
⊢
(⟪{{{x}}}, ⟪A, B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)) ↔ ¬ (⟪{{{x}}}, ⟪A,
B⟫⟫ ∈ Ins2k Sk ↔ ⟪{{{x}}}, ⟪A,
B⟫⟫ ∈ Ins3k ( Sk ∘k ◡k SIk C))) |
24 | | snex 4112 |
. . . . . . . . . . . . 13
⊢ {x} ∈
V |
25 | | otkelins2kg 4254 |
. . . . . . . . . . . . 13
⊢ (({x} ∈ V ∧ A ∈ V ∧ B ∈ V) →
(⟪{{{x}}}, ⟪A, B⟫⟫ ∈ Ins2k Sk ↔ ⟪{x}, B⟫
∈ Sk )) |
26 | 24, 25 | mp3an1 1264 |
. . . . . . . . . . . 12
⊢ ((A ∈ V ∧ B ∈ V) → (⟪{{{x}}}, ⟪A,
B⟫⟫ ∈ Ins2k Sk ↔ ⟪{x}, B⟫
∈ Sk )) |
27 | | vex 2863 |
. . . . . . . . . . . . . 14
⊢ x ∈
V |
28 | | elssetkg 4270 |
. . . . . . . . . . . . . 14
⊢ ((x ∈ V ∧ B ∈ V) → (⟪{x}, B⟫
∈ Sk ↔ x ∈ B)) |
29 | 27, 28 | mpan 651 |
. . . . . . . . . . . . 13
⊢ (B ∈ V →
(⟪{x}, B⟫ ∈ Sk ↔ x ∈ B)) |
30 | 29 | adantl 452 |
. . . . . . . . . . . 12
⊢ ((A ∈ V ∧ B ∈ V) → (⟪{x}, B⟫
∈ Sk ↔ x ∈ B)) |
31 | 26, 30 | bitrd 244 |
. . . . . . . . . . 11
⊢ ((A ∈ V ∧ B ∈ V) → (⟪{{{x}}}, ⟪A,
B⟫⟫ ∈ Ins2k Sk ↔ x ∈ B)) |
32 | | otkelins3kg 4255 |
. . . . . . . . . . . . 13
⊢ (({x} ∈ V ∧ A ∈ V ∧ B ∈ V) →
(⟪{{{x}}}, ⟪A, B⟫⟫ ∈ Ins3k ( Sk ∘k ◡k SIk C) ↔ ⟪{x}, A⟫
∈ ( Sk ∘k ◡k SIk C))) |
33 | 24, 32 | mp3an1 1264 |
. . . . . . . . . . . 12
⊢ ((A ∈ V ∧ B ∈ V) → (⟪{{{x}}}, ⟪A,
B⟫⟫ ∈ Ins3k ( Sk ∘k ◡k SIk C) ↔ ⟪{x}, A⟫
∈ ( Sk ∘k ◡k SIk C))) |
34 | | opkelcokg 4262 |
. . . . . . . . . . . . . . . 16
⊢ (({x} ∈ V ∧ A ∈ V) → (⟪{x}, A⟫
∈ ( Sk ∘k ◡k SIk C) ↔ ∃z(⟪{x},
z⟫ ∈ ◡k SIk C ∧
⟪z, A⟫ ∈ Sk ))) |
35 | 24, 34 | mpan 651 |
. . . . . . . . . . . . . . 15
⊢ (A ∈ V →
(⟪{x}, A⟫ ∈ (
Sk ∘k ◡k SIk C) ↔ ∃z(⟪{x},
z⟫ ∈ ◡k SIk C ∧
⟪z, A⟫ ∈ Sk ))) |
36 | | vex 2863 |
. . . . . . . . . . . . . . . . . . 19
⊢ y ∈
V |
37 | | elssetkg 4270 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((y ∈ V ∧ A ∈ V) → (⟪{y}, A⟫
∈ Sk ↔ y ∈ A)) |
38 | 36, 37 | mpan 651 |
. . . . . . . . . . . . . . . . . 18
⊢ (A ∈ V →
(⟪{y}, A⟫ ∈ Sk ↔ y ∈ A)) |
39 | 38 | anbi1d 685 |
. . . . . . . . . . . . . . . . 17
⊢ (A ∈ V →
((⟪{y}, A⟫ ∈ Sk ∧
⟪y, x⟫ ∈
C) ↔ (y ∈ A ∧
⟪y, x⟫ ∈
C))) |
40 | 39 | exbidv 1626 |
. . . . . . . . . . . . . . . 16
⊢ (A ∈ V →
(∃y(⟪{y},
A⟫ ∈ Sk
∧ ⟪y, x⟫
∈ C)
↔ ∃y(y ∈ A ∧ ⟪y,
x⟫ ∈ C))) |
41 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ z ∈
V |
42 | 24, 41 | opkelcnvk 4251 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (⟪{x}, z⟫
∈ ◡k SIk C ↔ ⟪z, {x}⟫
∈ SIk C) |
43 | | sikss1c1c 4268 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ SIk C ⊆
(1c ×k
1c) |
44 | 43 | sseli 3270 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (⟪z, {x}⟫
∈ SIk C → ⟪z, {x}⟫
∈ (1c
×k 1c)) |
45 | 41, 24 | opkelxpk 4249 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (⟪z, {x}⟫
∈ (1c
×k 1c) ↔ (z ∈
1c ∧ {x} ∈
1c)) |
46 | | el1c 4140 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (z ∈
1c ↔ ∃y z = {y}) |
47 | 46 | biimpi 186 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (z ∈
1c → ∃y z = {y}) |
48 | 47 | adantr 451 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((z ∈
1c ∧ {x} ∈
1c) → ∃y z = {y}) |
49 | 45, 48 | sylbi 187 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (⟪z, {x}⟫
∈ (1c
×k 1c) → ∃y z = {y}) |
50 | 44, 49 | syl 15 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (⟪z, {x}⟫
∈ SIk C → ∃y z = {y}) |
51 | 50 | pm4.71ri 614 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (⟪z, {x}⟫
∈ SIk C ↔ (∃y z = {y} ∧ ⟪z,
{x}⟫ ∈ SIk C)) |
52 | 42, 51 | bitri 240 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (⟪{x}, z⟫
∈ ◡k SIk C ↔ (∃y z = {y} ∧ ⟪z,
{x}⟫ ∈ SIk C)) |
53 | 52 | anbi1i 676 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((⟪{x}, z⟫
∈ ◡k SIk C ∧
⟪z, A⟫ ∈ Sk ) ↔ ((∃y z = {y} ∧ ⟪z,
{x}⟫ ∈ SIk C) ∧
⟪z, A⟫ ∈ Sk )) |
54 | | anass 630 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((∃y z = {y} ∧ ⟪z,
{x}⟫ ∈ SIk C) ∧
⟪z, A⟫ ∈ Sk ) ↔ (∃y z = {y} ∧ (⟪z,
{x}⟫ ∈ SIk C ∧
⟪z, A⟫ ∈ Sk ))) |
55 | | 19.41v 1901 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (∃y(z = {y} ∧ (⟪z,
{x}⟫ ∈ SIk C ∧
⟪z, A⟫ ∈ Sk )) ↔ (∃y z = {y} ∧ (⟪z,
{x}⟫ ∈ SIk C ∧
⟪z, A⟫ ∈ Sk ))) |
56 | 54, 55 | bitr4i 243 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((∃y z = {y} ∧ ⟪z,
{x}⟫ ∈ SIk C) ∧
⟪z, A⟫ ∈ Sk ) ↔ ∃y(z = {y} ∧ (⟪z,
{x}⟫ ∈ SIk C ∧
⟪z, A⟫ ∈ Sk ))) |
57 | 53, 56 | bitri 240 |
. . . . . . . . . . . . . . . . . 18
⊢ ((⟪{x}, z⟫
∈ ◡k SIk C ∧
⟪z, A⟫ ∈ Sk ) ↔ ∃y(z = {y} ∧ (⟪z,
{x}⟫ ∈ SIk C ∧
⟪z, A⟫ ∈ Sk ))) |
58 | 57 | exbii 1582 |
. . . . . . . . . . . . . . . . 17
⊢ (∃z(⟪{x},
z⟫ ∈ ◡k SIk C ∧
⟪z, A⟫ ∈ Sk ) ↔ ∃z∃y(z = {y} ∧ (⟪z,
{x}⟫ ∈ SIk C ∧
⟪z, A⟫ ∈ Sk ))) |
59 | | excom 1741 |
. . . . . . . . . . . . . . . . 17
⊢ (∃z∃y(z = {y} ∧ (⟪z,
{x}⟫ ∈ SIk C ∧
⟪z, A⟫ ∈ Sk )) ↔ ∃y∃z(z = {y} ∧ (⟪z,
{x}⟫ ∈ SIk C ∧
⟪z, A⟫ ∈ Sk ))) |
60 | | snex 4112 |
. . . . . . . . . . . . . . . . . . 19
⊢ {y} ∈
V |
61 | | opkeq1 4060 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (z = {y} →
⟪z, {x}⟫ = ⟪{y}, {x}⟫) |
62 | 61 | eleq1d 2419 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (z = {y} →
(⟪z, {x}⟫ ∈ SIk C ↔ ⟪{y}, {x}⟫
∈ SIk C)) |
63 | | opkeq1 4060 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (z = {y} →
⟪z, A⟫ = ⟪{y}, A⟫) |
64 | 63 | eleq1d 2419 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (z = {y} →
(⟪z, A⟫ ∈ Sk ↔ ⟪{y}, A⟫
∈ Sk )) |
65 | 62, 64 | anbi12d 691 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (z = {y} →
((⟪z, {x}⟫ ∈ SIk C ∧
⟪z, A⟫ ∈ Sk ) ↔ (⟪{y}, {x}⟫
∈ SIk C ∧
⟪{y}, A⟫ ∈ Sk ))) |
66 | | ancom 437 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((⟪{y}, {x}⟫
∈ SIk C ∧
⟪{y}, A⟫ ∈ Sk ) ↔ (⟪{y}, A⟫
∈ Sk ∧
⟪{y}, {x}⟫ ∈ SIk C)) |
67 | 36, 27 | opksnelsik 4266 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (⟪{y}, {x}⟫
∈ SIk C ↔ ⟪y, x⟫
∈ C) |
68 | 67 | anbi2i 675 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((⟪{y}, A⟫
∈ Sk ∧
⟪{y}, {x}⟫ ∈ SIk C) ↔ (⟪{y}, A⟫
∈ Sk ∧
⟪y, x⟫ ∈
C)) |
69 | 66, 68 | bitri 240 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((⟪{y}, {x}⟫
∈ SIk C ∧
⟪{y}, A⟫ ∈ Sk ) ↔ (⟪{y}, A⟫
∈ Sk ∧
⟪y, x⟫ ∈
C)) |
70 | 65, 69 | syl6bb 252 |
. . . . . . . . . . . . . . . . . . 19
⊢ (z = {y} →
((⟪z, {x}⟫ ∈ SIk C ∧
⟪z, A⟫ ∈ Sk ) ↔ (⟪{y}, A⟫
∈ Sk ∧
⟪y, x⟫ ∈
C))) |
71 | 60, 70 | ceqsexv 2895 |
. . . . . . . . . . . . . . . . . 18
⊢ (∃z(z = {y} ∧ (⟪z,
{x}⟫ ∈ SIk C ∧
⟪z, A⟫ ∈ Sk )) ↔ (⟪{y}, A⟫
∈ Sk ∧
⟪y, x⟫ ∈
C)) |
72 | 71 | exbii 1582 |
. . . . . . . . . . . . . . . . 17
⊢ (∃y∃z(z = {y} ∧ (⟪z,
{x}⟫ ∈ SIk C ∧
⟪z, A⟫ ∈ Sk )) ↔ ∃y(⟪{y},
A⟫ ∈ Sk
∧ ⟪y, x⟫
∈ C)) |
73 | 58, 59, 72 | 3bitri 262 |
. . . . . . . . . . . . . . . 16
⊢ (∃z(⟪{x},
z⟫ ∈ ◡k SIk C ∧
⟪z, A⟫ ∈ Sk ) ↔ ∃y(⟪{y},
A⟫ ∈ Sk
∧ ⟪y, x⟫
∈ C)) |
74 | | df-rex 2621 |
. . . . . . . . . . . . . . . 16
⊢ (∃y ∈ A
⟪y, x⟫ ∈
C ↔ ∃y(y ∈ A ∧
⟪y, x⟫ ∈
C)) |
75 | 40, 73, 74 | 3bitr4g 279 |
. . . . . . . . . . . . . . 15
⊢ (A ∈ V →
(∃z(⟪{x},
z⟫ ∈ ◡k SIk C ∧
⟪z, A⟫ ∈ Sk ) ↔ ∃y ∈ A
⟪y, x⟫ ∈
C)) |
76 | 35, 75 | bitrd 244 |
. . . . . . . . . . . . . 14
⊢ (A ∈ V →
(⟪{x}, A⟫ ∈ (
Sk ∘k ◡k SIk C) ↔ ∃y ∈ A
⟪y, x⟫ ∈
C)) |
77 | 27 | elimak 4260 |
. . . . . . . . . . . . . 14
⊢ (x ∈ (C “k A) ↔ ∃y ∈ A
⟪y, x⟫ ∈
C) |
78 | 76, 77 | syl6bbr 254 |
. . . . . . . . . . . . 13
⊢ (A ∈ V →
(⟪{x}, A⟫ ∈ (
Sk ∘k ◡k SIk C) ↔ x
∈ (C
“k A))) |
79 | 78 | adantr 451 |
. . . . . . . . . . . 12
⊢ ((A ∈ V ∧ B ∈ V) → (⟪{x}, A⟫
∈ ( Sk ∘k ◡k SIk C) ↔ x
∈ (C
“k A))) |
80 | 33, 79 | bitrd 244 |
. . . . . . . . . . 11
⊢ ((A ∈ V ∧ B ∈ V) → (⟪{{{x}}}, ⟪A,
B⟫⟫ ∈ Ins3k ( Sk ∘k ◡k SIk C) ↔ x
∈ (C
“k A))) |
81 | 31, 80 | bibi12d 312 |
. . . . . . . . . 10
⊢ ((A ∈ V ∧ B ∈ V) → ((⟪{{{x}}}, ⟪A,
B⟫⟫ ∈ Ins2k Sk ↔ ⟪{{{x}}}, ⟪A,
B⟫⟫ ∈ Ins3k ( Sk ∘k ◡k SIk C)) ↔ (x
∈ B
↔ x ∈ (C
“k A)))) |
82 | 81 | notbid 285 |
. . . . . . . . 9
⊢ ((A ∈ V ∧ B ∈ V) → (¬ (⟪{{{x}}}, ⟪A,
B⟫⟫ ∈ Ins2k Sk ↔ ⟪{{{x}}}, ⟪A,
B⟫⟫ ∈ Ins3k ( Sk ∘k ◡k SIk C)) ↔ ¬ (x ∈ B ↔ x ∈ (C
“k A)))) |
83 | 23, 82 | syl5bb 248 |
. . . . . . . 8
⊢ ((A ∈ V ∧ B ∈ V) → (⟪{{{x}}}, ⟪A,
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)) ↔ ¬ (x ∈ B ↔ x ∈ (C
“k A)))) |
84 | 83 | exbidv 1626 |
. . . . . . 7
⊢ ((A ∈ V ∧ B ∈ V) → (∃x⟪{{{x}}}, ⟪A,
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)) ↔ ∃x ¬
(x ∈
B ↔ x ∈ (C “k A)))) |
85 | 22, 84 | syl5rbb 249 |
. . . . . 6
⊢ ((A ∈ V ∧ B ∈ V) → (∃x ¬
(x ∈
B ↔ x ∈ (C “k A)) ↔ ⟪A, B⟫
∈ (( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)) “k ℘1℘11c))) |
86 | 6, 85 | syl5bbr 250 |
. . . . 5
⊢ ((A ∈ V ∧ B ∈ V) → (¬ ∀x(x ∈ B ↔ x ∈ (C
“k A)) ↔
⟪A, B⟫ ∈ ((
Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)) “k ℘1℘11c))) |
87 | 86 | con1bid 320 |
. . . 4
⊢ ((A ∈ V ∧ B ∈ V) → (¬ ⟪A, B⟫
∈ (( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)) “k ℘1℘11c) ↔ ∀x(x ∈ B ↔ x ∈ (C
“k A)))) |
88 | 5, 87 | bitr3d 246 |
. . 3
⊢ ((A ∈ V ∧ B ∈ V) → ((⟪A, B⟫
∈ (V ×k V) ∧ ¬ ⟪A, B⟫
∈ (( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)) “k ℘1℘11c)) ↔ ∀x(x ∈ B ↔ x ∈ (C
“k A)))) |
89 | | df-imagek 4195 |
. . . . 5
⊢
ImagekC = ((V
×k V) ∖ (( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)) “k ℘1℘11c)) |
90 | 89 | eleq2i 2417 |
. . . 4
⊢ (⟪A, B⟫
∈ ImagekC ↔ ⟪A, B⟫
∈ ((V ×k V) ∖ (( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)) “k ℘1℘11c))) |
91 | | eldif 3222 |
. . . 4
⊢ (⟪A, B⟫
∈ ((V ×k V) ∖ (( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)) “k ℘1℘11c)) ↔
(⟪A, B⟫ ∈ (V
×k V) ∧ ¬
⟪A, B⟫ ∈ ((
Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)) “k ℘1℘11c))) |
92 | 90, 91 | bitri 240 |
. . 3
⊢ (⟪A, B⟫
∈ ImagekC ↔ (⟪A, B⟫
∈ (V ×k V) ∧ ¬ ⟪A, B⟫
∈ (( Ins2k Sk ⊕ Ins3k ( Sk ∘k ◡k SIk C)) “k ℘1℘11c))) |
93 | | dfcleq 2347 |
. . 3
⊢ (B = (C
“k A) ↔ ∀x(x ∈ B ↔ x ∈ (C
“k A))) |
94 | 88, 92, 93 | 3bitr4g 279 |
. 2
⊢ ((A ∈ V ∧ B ∈ V) → (⟪A, B⟫
∈ ImagekC ↔ B =
(C “k A))) |
95 | 1, 2, 94 | syl2an 463 |
1
⊢ ((A ∈ V ∧ B ∈ W) → (⟪A, B⟫
∈ ImagekC ↔ B =
(C “k A))) |