NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  opkelimagekg GIF version

Theorem opkelimagekg 4272
Description: Membership in the Kuratowski image functor. (Contributed by SF, 13-Jan-2015.)
Assertion
Ref Expression
opkelimagekg ((A V B W) → (⟪A, B ImagekCB = (Ck A)))

Proof of Theorem opkelimagekg
Dummy variables x y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2868 . 2 (A VA V)
2 elex 2868 . 2 (B WB V)
3 opkelxpkg 4248 . . . . . 6 ((A V B V) → (⟪A, B (V ×k V) ↔ (A V B V)))
43ibir 233 . . . . 5 ((A V B V) → ⟪A, B (V ×k V))
54biantrurd 494 . . . 4 ((A V B V) → (¬ ⟪A, B (( Ins2k SkIns3k ( Sk k k SIk C)) “k 111c) ↔ (⟪A, B (V ×k V) ¬ ⟪A, B (( Ins2k SkIns3k ( Sk k k SIk C)) “k 111c))))
6 exnal 1574 . . . . . 6 (x ¬ (x Bx (Ck A)) ↔ ¬ x(x Bx (Ck A)))
7 opkex 4114 . . . . . . . . 9 A, B V
87elimak 4260 . . . . . . . 8 (⟪A, B (( Ins2k SkIns3k ( Sk k k SIk C)) “k 111c) ↔ y 1 11cy, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C)))
9 df-rex 2621 . . . . . . . 8 (y 1 11cy, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C)) ↔ y(y 111c y, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C))))
10 elpw121c 4149 . . . . . . . . . . . 12 (y 111cx y = {{{x}}})
1110anbi1i 676 . . . . . . . . . . 11 ((y 111c y, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C))) ↔ (x y = {{{x}}} y, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C))))
12 19.41v 1901 . . . . . . . . . . 11 (x(y = {{{x}}} y, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C))) ↔ (x y = {{{x}}} y, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C))))
1311, 12bitr4i 243 . . . . . . . . . 10 ((y 111c y, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C))) ↔ x(y = {{{x}}} y, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C))))
1413exbii 1582 . . . . . . . . 9 (y(y 111c y, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C))) ↔ yx(y = {{{x}}} y, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C))))
15 excom 1741 . . . . . . . . 9 (yx(y = {{{x}}} y, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C))) ↔ xy(y = {{{x}}} y, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C))))
16 snex 4112 . . . . . . . . . . 11 {{{x}}} V
17 opkeq1 4060 . . . . . . . . . . . 12 (y = {{{x}}} → ⟪y, ⟪A, B⟫⟫ = ⟪{{{x}}}, ⟪A, B⟫⟫)
1817eleq1d 2419 . . . . . . . . . . 11 (y = {{{x}}} → (⟪y, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C)) ↔ ⟪{{{x}}}, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C))))
1916, 18ceqsexv 2895 . . . . . . . . . 10 (y(y = {{{x}}} y, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C))) ↔ ⟪{{{x}}}, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C)))
2019exbii 1582 . . . . . . . . 9 (xy(y = {{{x}}} y, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C))) ↔ x⟪{{{x}}}, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C)))
2114, 15, 203bitri 262 . . . . . . . 8 (y(y 111c y, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C))) ↔ x⟪{{{x}}}, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C)))
228, 9, 213bitri 262 . . . . . . 7 (⟪A, B (( Ins2k SkIns3k ( Sk k k SIk C)) “k 111c) ↔ x⟪{{{x}}}, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C)))
23 elsymdif 3224 . . . . . . . . 9 (⟪{{{x}}}, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C)) ↔ ¬ (⟪{{{x}}}, ⟪A, B⟫⟫ Ins2k Sk ↔ ⟪{{{x}}}, ⟪A, B⟫⟫ Ins3k ( Sk k k SIk C)))
24 snex 4112 . . . . . . . . . . . . 13 {x} V
25 otkelins2kg 4254 . . . . . . . . . . . . 13 (({x} V A V B V) → (⟪{{{x}}}, ⟪A, B⟫⟫ Ins2k Sk ↔ ⟪{x}, B Sk ))
2624, 25mp3an1 1264 . . . . . . . . . . . 12 ((A V B V) → (⟪{{{x}}}, ⟪A, B⟫⟫ Ins2k Sk ↔ ⟪{x}, B Sk ))
27 vex 2863 . . . . . . . . . . . . . 14 x V
28 elssetkg 4270 . . . . . . . . . . . . . 14 ((x V B V) → (⟪{x}, B Skx B))
2927, 28mpan 651 . . . . . . . . . . . . 13 (B V → (⟪{x}, B Skx B))
3029adantl 452 . . . . . . . . . . . 12 ((A V B V) → (⟪{x}, B Skx B))
3126, 30bitrd 244 . . . . . . . . . . 11 ((A V B V) → (⟪{{{x}}}, ⟪A, B⟫⟫ Ins2k Skx B))
32 otkelins3kg 4255 . . . . . . . . . . . . 13 (({x} V A V B V) → (⟪{{{x}}}, ⟪A, B⟫⟫ Ins3k ( Sk k k SIk C) ↔ ⟪{x}, A ( Sk k k SIk C)))
3324, 32mp3an1 1264 . . . . . . . . . . . 12 ((A V B V) → (⟪{{{x}}}, ⟪A, B⟫⟫ Ins3k ( Sk k k SIk C) ↔ ⟪{x}, A ( Sk k k SIk C)))
34 opkelcokg 4262 . . . . . . . . . . . . . . . 16 (({x} V A V) → (⟪{x}, A ( Sk k k SIk C) ↔ z(⟪{x}, z k SIk C z, A Sk )))
3524, 34mpan 651 . . . . . . . . . . . . . . 15 (A V → (⟪{x}, A ( Sk k k SIk C) ↔ z(⟪{x}, z k SIk C z, A Sk )))
36 vex 2863 . . . . . . . . . . . . . . . . . . 19 y V
37 elssetkg 4270 . . . . . . . . . . . . . . . . . . 19 ((y V A V) → (⟪{y}, A Sky A))
3836, 37mpan 651 . . . . . . . . . . . . . . . . . 18 (A V → (⟪{y}, A Sky A))
3938anbi1d 685 . . . . . . . . . . . . . . . . 17 (A V → ((⟪{y}, A Sk y, x C) ↔ (y A y, x C)))
4039exbidv 1626 . . . . . . . . . . . . . . . 16 (A V → (y(⟪{y}, A Sk y, x C) ↔ y(y A y, x C)))
41 vex 2863 . . . . . . . . . . . . . . . . . . . . . 22 z V
4224, 41opkelcnvk 4251 . . . . . . . . . . . . . . . . . . . . 21 (⟪{x}, z k SIk C ↔ ⟪z, {x}⟫ SIk C)
43 sikss1c1c 4268 . . . . . . . . . . . . . . . . . . . . . . . 24 SIk C (1c ×k 1c)
4443sseli 3270 . . . . . . . . . . . . . . . . . . . . . . 23 (⟪z, {x}⟫ SIk C → ⟪z, {x}⟫ (1c ×k 1c))
4541, 24opkelxpk 4249 . . . . . . . . . . . . . . . . . . . . . . . 24 (⟪z, {x}⟫ (1c ×k 1c) ↔ (z 1c {x} 1c))
46 el1c 4140 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (z 1cy z = {y})
4746biimpi 186 . . . . . . . . . . . . . . . . . . . . . . . . 25 (z 1cy z = {y})
4847adantr 451 . . . . . . . . . . . . . . . . . . . . . . . 24 ((z 1c {x} 1c) → y z = {y})
4945, 48sylbi 187 . . . . . . . . . . . . . . . . . . . . . . 23 (⟪z, {x}⟫ (1c ×k 1c) → y z = {y})
5044, 49syl 15 . . . . . . . . . . . . . . . . . . . . . 22 (⟪z, {x}⟫ SIk Cy z = {y})
5150pm4.71ri 614 . . . . . . . . . . . . . . . . . . . . 21 (⟪z, {x}⟫ SIk C ↔ (y z = {y} z, {x}⟫ SIk C))
5242, 51bitri 240 . . . . . . . . . . . . . . . . . . . 20 (⟪{x}, z k SIk C ↔ (y z = {y} z, {x}⟫ SIk C))
5352anbi1i 676 . . . . . . . . . . . . . . . . . . 19 ((⟪{x}, z k SIk C z, A Sk ) ↔ ((y z = {y} z, {x}⟫ SIk C) z, A Sk ))
54 anass 630 . . . . . . . . . . . . . . . . . . . 20 (((y z = {y} z, {x}⟫ SIk C) z, A Sk ) ↔ (y z = {y} (⟪z, {x}⟫ SIk C z, A Sk )))
55 19.41v 1901 . . . . . . . . . . . . . . . . . . . 20 (y(z = {y} (⟪z, {x}⟫ SIk C z, A Sk )) ↔ (y z = {y} (⟪z, {x}⟫ SIk C z, A Sk )))
5654, 55bitr4i 243 . . . . . . . . . . . . . . . . . . 19 (((y z = {y} z, {x}⟫ SIk C) z, A Sk ) ↔ y(z = {y} (⟪z, {x}⟫ SIk C z, A Sk )))
5753, 56bitri 240 . . . . . . . . . . . . . . . . . 18 ((⟪{x}, z k SIk C z, A Sk ) ↔ y(z = {y} (⟪z, {x}⟫ SIk C z, A Sk )))
5857exbii 1582 . . . . . . . . . . . . . . . . 17 (z(⟪{x}, z k SIk C z, A Sk ) ↔ zy(z = {y} (⟪z, {x}⟫ SIk C z, A Sk )))
59 excom 1741 . . . . . . . . . . . . . . . . 17 (zy(z = {y} (⟪z, {x}⟫ SIk C z, A Sk )) ↔ yz(z = {y} (⟪z, {x}⟫ SIk C z, A Sk )))
60 snex 4112 . . . . . . . . . . . . . . . . . . 19 {y} V
61 opkeq1 4060 . . . . . . . . . . . . . . . . . . . . . 22 (z = {y} → ⟪z, {x}⟫ = ⟪{y}, {x}⟫)
6261eleq1d 2419 . . . . . . . . . . . . . . . . . . . . 21 (z = {y} → (⟪z, {x}⟫ SIk C ↔ ⟪{y}, {x}⟫ SIk C))
63 opkeq1 4060 . . . . . . . . . . . . . . . . . . . . . 22 (z = {y} → ⟪z, A⟫ = ⟪{y}, A⟫)
6463eleq1d 2419 . . . . . . . . . . . . . . . . . . . . 21 (z = {y} → (⟪z, A Sk ↔ ⟪{y}, A Sk ))
6562, 64anbi12d 691 . . . . . . . . . . . . . . . . . . . 20 (z = {y} → ((⟪z, {x}⟫ SIk C z, A Sk ) ↔ (⟪{y}, {x}⟫ SIk C ⟪{y}, A Sk )))
66 ancom 437 . . . . . . . . . . . . . . . . . . . . 21 ((⟪{y}, {x}⟫ SIk C ⟪{y}, A Sk ) ↔ (⟪{y}, A Sk ⟪{y}, {x}⟫ SIk C))
6736, 27opksnelsik 4266 . . . . . . . . . . . . . . . . . . . . . 22 (⟪{y}, {x}⟫ SIk C ↔ ⟪y, x C)
6867anbi2i 675 . . . . . . . . . . . . . . . . . . . . 21 ((⟪{y}, A Sk ⟪{y}, {x}⟫ SIk C) ↔ (⟪{y}, A Sk y, x C))
6966, 68bitri 240 . . . . . . . . . . . . . . . . . . . 20 ((⟪{y}, {x}⟫ SIk C ⟪{y}, A Sk ) ↔ (⟪{y}, A Sk y, x C))
7065, 69syl6bb 252 . . . . . . . . . . . . . . . . . . 19 (z = {y} → ((⟪z, {x}⟫ SIk C z, A Sk ) ↔ (⟪{y}, A Sk y, x C)))
7160, 70ceqsexv 2895 . . . . . . . . . . . . . . . . . 18 (z(z = {y} (⟪z, {x}⟫ SIk C z, A Sk )) ↔ (⟪{y}, A Sk y, x C))
7271exbii 1582 . . . . . . . . . . . . . . . . 17 (yz(z = {y} (⟪z, {x}⟫ SIk C z, A Sk )) ↔ y(⟪{y}, A Sk y, x C))
7358, 59, 723bitri 262 . . . . . . . . . . . . . . . 16 (z(⟪{x}, z k SIk C z, A Sk ) ↔ y(⟪{y}, A Sk y, x C))
74 df-rex 2621 . . . . . . . . . . . . . . . 16 (y Ay, x Cy(y A y, x C))
7540, 73, 743bitr4g 279 . . . . . . . . . . . . . . 15 (A V → (z(⟪{x}, z k SIk C z, A Sk ) ↔ y Ay, x C))
7635, 75bitrd 244 . . . . . . . . . . . . . 14 (A V → (⟪{x}, A ( Sk k k SIk C) ↔ y Ay, x C))
7727elimak 4260 . . . . . . . . . . . . . 14 (x (Ck A) ↔ y Ay, x C)
7876, 77syl6bbr 254 . . . . . . . . . . . . 13 (A V → (⟪{x}, A ( Sk k k SIk C) ↔ x (Ck A)))
7978adantr 451 . . . . . . . . . . . 12 ((A V B V) → (⟪{x}, A ( Sk k k SIk C) ↔ x (Ck A)))
8033, 79bitrd 244 . . . . . . . . . . 11 ((A V B V) → (⟪{{{x}}}, ⟪A, B⟫⟫ Ins3k ( Sk k k SIk C) ↔ x (Ck A)))
8131, 80bibi12d 312 . . . . . . . . . 10 ((A V B V) → ((⟪{{{x}}}, ⟪A, B⟫⟫ Ins2k Sk ↔ ⟪{{{x}}}, ⟪A, B⟫⟫ Ins3k ( Sk k k SIk C)) ↔ (x Bx (Ck A))))
8281notbid 285 . . . . . . . . 9 ((A V B V) → (¬ (⟪{{{x}}}, ⟪A, B⟫⟫ Ins2k Sk ↔ ⟪{{{x}}}, ⟪A, B⟫⟫ Ins3k ( Sk k k SIk C)) ↔ ¬ (x Bx (Ck A))))
8323, 82syl5bb 248 . . . . . . . 8 ((A V B V) → (⟪{{{x}}}, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C)) ↔ ¬ (x Bx (Ck A))))
8483exbidv 1626 . . . . . . 7 ((A V B V) → (x⟪{{{x}}}, ⟪A, B⟫⟫ ( Ins2k SkIns3k ( Sk k k SIk C)) ↔ x ¬ (x Bx (Ck A))))
8522, 84syl5rbb 249 . . . . . 6 ((A V B V) → (x ¬ (x Bx (Ck A)) ↔ ⟪A, B (( Ins2k SkIns3k ( Sk k k SIk C)) “k 111c)))
866, 85syl5bbr 250 . . . . 5 ((A V B V) → (¬ x(x Bx (Ck A)) ↔ ⟪A, B (( Ins2k SkIns3k ( Sk k k SIk C)) “k 111c)))
8786con1bid 320 . . . 4 ((A V B V) → (¬ ⟪A, B (( Ins2k SkIns3k ( Sk k k SIk C)) “k 111c) ↔ x(x Bx (Ck A))))
885, 87bitr3d 246 . . 3 ((A V B V) → ((⟪A, B (V ×k V) ¬ ⟪A, B (( Ins2k SkIns3k ( Sk k k SIk C)) “k 111c)) ↔ x(x Bx (Ck A))))
89 df-imagek 4195 . . . . 5 ImagekC = ((V ×k V) (( Ins2k SkIns3k ( Sk k k SIk C)) “k 111c))
9089eleq2i 2417 . . . 4 (⟪A, B ImagekC ↔ ⟪A, B ((V ×k V) (( Ins2k SkIns3k ( Sk k k SIk C)) “k 111c)))
91 eldif 3222 . . . 4 (⟪A, B ((V ×k V) (( Ins2k SkIns3k ( Sk k k SIk C)) “k 111c)) ↔ (⟪A, B (V ×k V) ¬ ⟪A, B (( Ins2k SkIns3k ( Sk k k SIk C)) “k 111c)))
9290, 91bitri 240 . . 3 (⟪A, B ImagekC ↔ (⟪A, B (V ×k V) ¬ ⟪A, B (( Ins2k SkIns3k ( Sk k k SIk C)) “k 111c)))
93 dfcleq 2347 . . 3 (B = (Ck A) ↔ x(x Bx (Ck A)))
9488, 92, 933bitr4g 279 . 2 ((A V B V) → (⟪A, B ImagekCB = (Ck A)))
951, 2, 94syl2an 463 1 ((A V B W) → (⟪A, B ImagekCB = (Ck A)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358  wal 1540  wex 1541   = wceq 1642   wcel 1710  wrex 2616  Vcvv 2860   cdif 3207  csymdif 3210  {csn 3738  copk 4058  1cc1c 4135  1cpw1 4136   ×k cxpk 4175  kccnvk 4176   Ins2k cins2k 4177   Ins3k cins3k 4178  k cimak 4180   k ccomk 4181   SIk csik 4182  Imagekcimagek 4183   Sk cssetk 4184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-pr 3743  df-opk 4059  df-1c 4137  df-pw1 4138  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-sik 4193  df-ssetk 4194  df-imagek 4195
This theorem is referenced by:  opkelimagek  4273  dfnnc2  4396  nnc0suc  4413  nncaddccl  4420  nnsucelrlem1  4425
  Copyright terms: Public domain W3C validator