New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > con1bii | GIF version |
Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 13-Oct-2012.) |
Ref | Expression |
---|---|
con1bii.1 | ⊢ (¬ φ ↔ ψ) |
Ref | Expression |
---|---|
con1bii | ⊢ (¬ ψ ↔ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 282 | . . 3 ⊢ (φ ↔ ¬ ¬ φ) | |
2 | con1bii.1 | . . 3 ⊢ (¬ φ ↔ ψ) | |
3 | 1, 2 | xchbinx 301 | . 2 ⊢ (φ ↔ ¬ ψ) |
4 | 3 | bicomi 193 | 1 ⊢ (¬ ψ ↔ φ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: con2bii 322 xor 861 3oran 951 had0 1403 mpto2OLD 1535 necon1abii 2567 necon1bbii 2568 npss 3379 dfnul3 3553 disj 3591 snprc 3788 dfpss4 3888 0nel1c 4159 dfnnc2 4395 eqpw1relk 4479 eqtfinrelk 4486 releqel 5807 fnfullfunlem1 5856 ovcelem1 6171 tcfnex 6244 nclennlem1 6248 nnc3n3p1 6278 nchoicelem10 6298 nchoicelem11 6299 nchoicelem16 6304 fnfreclem1 6317 |
Copyright terms: Public domain | W3C validator |