New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > con1bii | GIF version |
Description: A contraposition inference. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 13-Oct-2012.) |
Ref | Expression |
---|---|
con1bii.1 | ⊢ (¬ φ ↔ ψ) |
Ref | Expression |
---|---|
con1bii | ⊢ (¬ ψ ↔ φ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 282 | . . 3 ⊢ (φ ↔ ¬ ¬ φ) | |
2 | con1bii.1 | . . 3 ⊢ (¬ φ ↔ ψ) | |
3 | 1, 2 | xchbinx 301 | . 2 ⊢ (φ ↔ ¬ ψ) |
4 | 3 | bicomi 193 | 1 ⊢ (¬ ψ ↔ φ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: con2bii 322 xor 861 3oran 951 had0 1403 mpto2OLD 1535 necon1abii 2568 necon1bbii 2569 npss 3380 dfnul3 3554 disj 3592 snprc 3789 dfpss4 3889 0nel1c 4160 dfnnc2 4396 eqpw1relk 4480 eqtfinrelk 4487 releqel 5808 fnfullfunlem1 5857 ovcelem1 6172 tcfnex 6245 nclennlem1 6249 nnc3n3p1 6279 nchoicelem10 6299 nchoicelem11 6300 nchoicelem16 6305 fnfreclem1 6318 |
Copyright terms: Public domain | W3C validator |