New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > con34b | GIF version |
Description: Contraposition. Theorem *4.1 of [WhiteheadRussell] p. 116. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
con34b | ⊢ ((φ → ψ) ↔ (¬ ψ → ¬ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con3 126 | . 2 ⊢ ((φ → ψ) → (¬ ψ → ¬ φ)) | |
2 | ax-3 8 | . 2 ⊢ ((¬ ψ → ¬ φ) → (φ → ψ)) | |
3 | 1, 2 | impbii 180 | 1 ⊢ ((φ → ψ) ↔ (¬ ψ → ¬ φ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: mtt 329 pm4.14 561 sscon34 3662 evenodddisjlem1 4516 |
Copyright terms: Public domain | W3C validator |