NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  con3 GIF version

Theorem con3 126
Description: Contraposition. Theorem *2.16 of [WhiteheadRussell] p. 103. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 13-Feb-2013.)
Assertion
Ref Expression
con3 ((φψ) → (¬ ψ → ¬ φ))

Proof of Theorem con3
StepHypRef Expression
1 id 19 . 2 ((φψ) → (φψ))
21con3d 125 1 ((φψ) → (¬ ψ → ¬ φ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm2.65  164  con34b  283  nic-ax  1438  nic-axALT  1439  exim  1575  hbnt  1775  nfndOLD  1792  hbimdOLD  1816  equsalhwOLD  1839  dvelimv  1939  ax9o  1950  ax11indn  2195  rexim  2719  ralf0  3657
  Copyright terms: Public domain W3C validator