New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > con3 | GIF version |
Description: Contraposition. Theorem *2.16 of [WhiteheadRussell] p. 103. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 13-Feb-2013.) |
Ref | Expression |
---|---|
con3 | ⊢ ((φ → ψ) → (¬ ψ → ¬ φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . 2 ⊢ ((φ → ψ) → (φ → ψ)) | |
2 | 1 | con3d 125 | 1 ⊢ ((φ → ψ) → (¬ ψ → ¬ φ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem is referenced by: pm2.65 164 con34b 283 nic-ax 1438 nic-axALT 1439 exim 1575 hbnt 1775 nfndOLD 1792 hbimdOLD 1816 equsalhwOLD 1839 dvelimv 1939 ax9o 1950 ax11indn 2195 rexim 2719 ralf0 3657 |
Copyright terms: Public domain | W3C validator |