New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm4.14 | GIF version |
Description: Theorem *4.14 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 23-Oct-2012.) |
Ref | Expression |
---|---|
pm4.14 | ⊢ (((φ ∧ ψ) → χ) ↔ ((φ ∧ ¬ χ) → ¬ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con34b 283 | . . 3 ⊢ ((ψ → χ) ↔ (¬ χ → ¬ ψ)) | |
2 | 1 | imbi2i 303 | . 2 ⊢ ((φ → (ψ → χ)) ↔ (φ → (¬ χ → ¬ ψ))) |
3 | impexp 433 | . 2 ⊢ (((φ ∧ ψ) → χ) ↔ (φ → (ψ → χ))) | |
4 | impexp 433 | . 2 ⊢ (((φ ∧ ¬ χ) → ¬ ψ) ↔ (φ → (¬ χ → ¬ ψ))) | |
5 | 2, 3, 4 | 3bitr4i 268 | 1 ⊢ (((φ ∧ ψ) → χ) ↔ ((φ ∧ ¬ χ) → ¬ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: pm3.37 562 |
Copyright terms: Public domain | W3C validator |