NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  con3and GIF version

Theorem con3and 428
Description: Variant of con3d 125 with importation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
con3and.1 (φ → (ψχ))
Assertion
Ref Expression
con3and ((φ ¬ χ) → ¬ ψ)

Proof of Theorem con3and
StepHypRef Expression
1 con3and.1 . . 3 (φ → (ψχ))
21con3d 125 . 2 (φ → (¬ χ → ¬ ψ))
32imp 418 1 ((φ ¬ χ) → ¬ ψ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  ax12olem1  1927  nelneq  2451  nelneq2  2452
  Copyright terms: Public domain W3C validator