NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  nelneq GIF version

Theorem nelneq 2451
Description: A way of showing two classes are not equal. (Contributed by NM, 1-Apr-1997.)
Assertion
Ref Expression
nelneq ((A C ¬ B C) → ¬ A = B)

Proof of Theorem nelneq
StepHypRef Expression
1 eleq1 2413 . . 3 (A = B → (A CB C))
21biimpcd 215 . 2 (A C → (A = BB C))
32con3and 428 1 ((A C ¬ B C) → ¬ A = B)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358   = wceq 1642   wcel 1710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-11 1746  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542  df-cleq 2346  df-clel 2349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator