NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  impancom GIF version

Theorem impancom 427
Description: Mixed importation/commutation inference. (Contributed by NM, 22-Jun-2013.)
Hypothesis
Ref Expression
impancom.1 ((φ ψ) → (χθ))
Assertion
Ref Expression
impancom ((φ χ) → (ψθ))

Proof of Theorem impancom
StepHypRef Expression
1 impancom.1 . . . 4 ((φ ψ) → (χθ))
21ex 423 . . 3 (φ → (ψ → (χθ)))
32com23 72 . 2 (φ → (χ → (ψθ)))
43imp 418 1 ((φ χ) → (ψθ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  spimt  1974  eqrdav  2352
  Copyright terms: Public domain W3C validator