Proof of Theorem ax12olem1
Step | Hyp | Ref
| Expression |
1 | | ax-8 1675 |
. . . . 5
⊢ (y = w →
(y = z
→ w = z)) |
2 | | equcomi 1679 |
. . . . 5
⊢ (w = z →
z = w) |
3 | 1, 2 | syl6 29 |
. . . 4
⊢ (y = w →
(y = z
→ z = w)) |
4 | 3 | con3and 428 |
. . 3
⊢ ((y = w ∧ ¬ z =
w) → ¬ y = z) |
5 | 4 | exlimiv 1634 |
. 2
⊢ (∃w(y = w ∧ ¬ z =
w) → ¬ y = z) |
6 | | ax-17 1616 |
. . 3
⊢ (¬ y = z →
∀w
¬ y = z) |
7 | | ax-8 1675 |
. . . . . . . 8
⊢ (w = z →
(w = y
→ z = y)) |
8 | | equcomi 1679 |
. . . . . . . 8
⊢ (z = y →
y = z) |
9 | 7, 8 | syl6 29 |
. . . . . . 7
⊢ (w = z →
(w = y
→ y = z)) |
10 | 9 | equcoms 1681 |
. . . . . 6
⊢ (z = w →
(w = y
→ y = z)) |
11 | 10 | com12 27 |
. . . . 5
⊢ (w = y →
(z = w
→ y = z)) |
12 | 11 | con3d 125 |
. . . 4
⊢ (w = y →
(¬ y = z → ¬ z
= w)) |
13 | | equcomi 1679 |
. . . 4
⊢ (w = y →
y = w) |
14 | 12, 13 | jctild 527 |
. . 3
⊢ (w = y →
(¬ y = z → (y =
w ∧ ¬
z = w))) |
15 | 6, 14 | spimeh 1667 |
. 2
⊢ (¬ y = z →
∃w(y = w ∧ ¬ z = w)) |
16 | 5, 15 | impbii 180 |
1
⊢ (∃w(y = w ∧ ¬ z =
w) ↔ ¬ y = z) |