NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dedlem0a GIF version

Theorem dedlem0a 918
Description: Lemma for an alternate version of weak deduction theorem. (Contributed by NM, 2-Apr-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2012.)
Assertion
Ref Expression
dedlem0a (φ → (ψ ↔ ((χφ) → (ψ φ))))

Proof of Theorem dedlem0a
StepHypRef Expression
1 iba 489 . 2 (φ → (ψ ↔ (ψ φ)))
2 ax-1 6 . . 3 (φ → (χφ))
3 biimt 325 . . 3 ((χφ) → ((ψ φ) ↔ ((χφ) → (ψ φ))))
42, 3syl 15 . 2 (φ → ((ψ φ) ↔ ((χφ) → (ψ φ))))
51, 4bitrd 244 1 (φ → (ψ ↔ ((χφ) → (ψ φ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  iftrue  3669
  Copyright terms: Public domain W3C validator