| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > dedlem0a | GIF version | ||
| Description: Lemma for an alternate version of weak deduction theorem. (Contributed by NM, 2-Apr-1994.) (Proof shortened by Andrew Salmon, 7-May-2011.) (Proof shortened by Wolf Lammen, 4-Dec-2012.) |
| Ref | Expression |
|---|---|
| dedlem0a | ⊢ (φ → (ψ ↔ ((χ → φ) → (ψ ∧ φ)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iba 489 | . 2 ⊢ (φ → (ψ ↔ (ψ ∧ φ))) | |
| 2 | ax-1 6 | . . 3 ⊢ (φ → (χ → φ)) | |
| 3 | biimt 325 | . . 3 ⊢ ((χ → φ) → ((ψ ∧ φ) ↔ ((χ → φ) → (ψ ∧ φ)))) | |
| 4 | 2, 3 | syl 15 | . 2 ⊢ (φ → ((ψ ∧ φ) ↔ ((χ → φ) → (ψ ∧ φ)))) |
| 5 | 1, 4 | bitrd 244 | 1 ⊢ (φ → (ψ ↔ ((χ → φ) → (ψ ∧ φ)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: iftrue 3669 |
| Copyright terms: Public domain | W3C validator |