NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  iftrue GIF version

Theorem iftrue 3669
Description: Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
iftrue (φ → if(φ, A, B) = A)

Proof of Theorem iftrue
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 dedlem0a 918 . . 3 (φ → (x A ↔ ((x Bφ) → (x A φ))))
21abbi2dv 2469 . 2 (φA = {x ((x Bφ) → (x A φ))})
3 dfif2 3665 . 2 if(φ, A, B) = {x ((x Bφ) → (x A φ))}
42, 3syl6reqr 2404 1 (φ → if(φ, A, B) = A)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642   wcel 1710  {cab 2339   ifcif 3663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-if 3664
This theorem is referenced by:  ifsb  3672  ifbi  3680  ifeq2da  3689  ifclda  3690  elimif  3692  ifbothda  3693  ifid  3695  ifeqor  3700  ifnot  3701  ifan  3702  ifor  3703  dedth  3704  elimhyp  3711  elimhyp2v  3712  elimhyp3v  3713  elimhyp4v  3714  elimdhyp  3716  keephyp2v  3718  keephyp3v  3719  setswith  4322  dfiota3  4371  eqtfinrelk  4487  tfinnul  4492  dfphi2  4570  phi11lem1  4596  0cnelphi  4598  phialllem1  4617  elimdelov  5574  enprmaplem5  6081
  Copyright terms: Public domain W3C validator