New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iftrue | GIF version |
Description: Value of the conditional operator when its first argument is true. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
iftrue | ⊢ (φ → if(φ, A, B) = A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedlem0a 918 | . . 3 ⊢ (φ → (x ∈ A ↔ ((x ∈ B → φ) → (x ∈ A ∧ φ)))) | |
2 | 1 | abbi2dv 2469 | . 2 ⊢ (φ → A = {x ∣ ((x ∈ B → φ) → (x ∈ A ∧ φ))}) |
3 | dfif2 3665 | . 2 ⊢ if(φ, A, B) = {x ∣ ((x ∈ B → φ) → (x ∈ A ∧ φ))} | |
4 | 2, 3 | syl6reqr 2404 | 1 ⊢ (φ → if(φ, A, B) = A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 {cab 2339 ifcif 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-if 3664 |
This theorem is referenced by: ifsb 3672 ifbi 3680 ifeq2da 3689 ifclda 3690 elimif 3692 ifbothda 3693 ifid 3695 ifeqor 3700 ifnot 3701 ifan 3702 ifor 3703 dedth 3704 elimhyp 3711 elimhyp2v 3712 elimhyp3v 3713 elimhyp4v 3714 elimdhyp 3716 keephyp2v 3718 keephyp3v 3719 setswith 4322 dfiota3 4371 eqtfinrelk 4487 tfinnul 4492 dfphi2 4570 phi11lem1 4596 0cnelphi 4598 phialllem1 4617 elimdelov 5574 enprmaplem5 6081 |
Copyright terms: Public domain | W3C validator |