New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > bitrd | GIF version |
Description: Deduction form of bitri 240. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 14-Apr-2013.) |
Ref | Expression |
---|---|
bitrd.1 | ⊢ (φ → (ψ ↔ χ)) |
bitrd.2 | ⊢ (φ → (χ ↔ θ)) |
Ref | Expression |
---|---|
bitrd | ⊢ (φ → (ψ ↔ θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitrd.1 | . . . 4 ⊢ (φ → (ψ ↔ χ)) | |
2 | 1 | pm5.74i 236 | . . 3 ⊢ ((φ → ψ) ↔ (φ → χ)) |
3 | bitrd.2 | . . . 4 ⊢ (φ → (χ ↔ θ)) | |
4 | 3 | pm5.74i 236 | . . 3 ⊢ ((φ → χ) ↔ (φ → θ)) |
5 | 2, 4 | bitri 240 | . 2 ⊢ ((φ → ψ) ↔ (φ → θ)) |
6 | 5 | pm5.74ri 237 | 1 ⊢ (φ → (ψ ↔ θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: bitr2d 245 bitr3d 246 bitr4d 247 syl5bb 248 syl6bb 252 3bitrd 270 3bitr2d 272 3bitr3d 274 3bitr4d 276 imbi12d 311 bibi12d 312 sylan9bb 680 orbi12d 690 anbi12d 691 dedlem0a 918 ax11el 2194 eleq12d 2421 neeq12d 2532 neleq12d 2610 raleqbi1dv 2816 rexeqbi1dv 2817 reueqd 2818 rmoeqd 2819 raleqbidv 2820 rexeqbidv 2821 raleqbidva 2822 rexeqbidva 2823 eueq3 3012 sbc19.21g 3111 sbcrext 3120 sbcabel 3124 sbcel1g 3156 sbceq1g 3157 sbcel2g 3158 sbceq2g 3159 sbccsb2g 3166 sbcco3g 3192 elin 3220 elun 3221 sseq12d 3301 psseq12d 3364 raaan 3658 raaanv 3659 sbcss 3661 elimhyp2v 3712 elimhyp4v 3714 keephyp2v 3718 ralsng 3766 rexsng 3767 ssunsn2 3866 2ralunsn 3881 csbunig 3900 otkelins2kg 4254 otkelins3kg 4255 opkelcokg 4262 opkelimagekg 4272 reiota2 4369 eqtfinrelk 4487 vfintle 4547 breq123d 4654 sbcbr12g 4687 sbcbr1g 4688 sbcbr2g 4689 csbxpg 4814 csbrng 4967 fneq12d 5178 feq12d 5217 f1osng 5324 csbfv12g 5337 eqfnfv2 5394 funimass3 5405 funconstss 5407 dffo3 5423 fressnfv 5440 f1elima 5475 isomin 5497 f1oiso 5500 ov 5596 ovg 5602 erth2 5970 elmapg 6013 elpmg 6014 ce0nnulb 6183 ce0lenc1 6240 nmembers1lem3 6271 nchoicelem8 6297 |
Copyright terms: Public domain | W3C validator |