| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > dedlem0b | GIF version | ||
| Description: Lemma for an alternate version of weak deduction theorem. (Contributed by NM, 2-Apr-1994.) |
| Ref | Expression |
|---|---|
| dedlem0b | ⊢ (¬ φ → (ψ ↔ ((ψ → φ) → (χ ∧ φ)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.21 100 | . . . 4 ⊢ (¬ φ → (φ → (χ ∧ φ))) | |
| 2 | 1 | imim2d 48 | . . 3 ⊢ (¬ φ → ((ψ → φ) → (ψ → (χ ∧ φ)))) |
| 3 | 2 | com23 72 | . 2 ⊢ (¬ φ → (ψ → ((ψ → φ) → (χ ∧ φ)))) |
| 4 | pm2.21 100 | . . . . 5 ⊢ (¬ ψ → (ψ → φ)) | |
| 5 | simpr 447 | . . . . 5 ⊢ ((χ ∧ φ) → φ) | |
| 6 | 4, 5 | imim12i 53 | . . . 4 ⊢ (((ψ → φ) → (χ ∧ φ)) → (¬ ψ → φ)) |
| 7 | 6 | con1d 116 | . . 3 ⊢ (((ψ → φ) → (χ ∧ φ)) → (¬ φ → ψ)) |
| 8 | 7 | com12 27 | . 2 ⊢ (¬ φ → (((ψ → φ) → (χ ∧ φ)) → ψ)) |
| 9 | 3, 8 | impbid 183 | 1 ⊢ (¬ φ → (ψ ↔ ((ψ → φ) → (χ ∧ φ)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |