NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dedlem0b GIF version

Theorem dedlem0b 919
Description: Lemma for an alternate version of weak deduction theorem. (Contributed by NM, 2-Apr-1994.)
Assertion
Ref Expression
dedlem0b φ → (ψ ↔ ((ψφ) → (χ φ))))

Proof of Theorem dedlem0b
StepHypRef Expression
1 pm2.21 100 . . . 4 φ → (φ → (χ φ)))
21imim2d 48 . . 3 φ → ((ψφ) → (ψ → (χ φ))))
32com23 72 . 2 φ → (ψ → ((ψφ) → (χ φ))))
4 pm2.21 100 . . . . 5 ψ → (ψφ))
5 simpr 447 . . . . 5 ((χ φ) → φ)
64, 5imim12i 53 . . . 4 (((ψφ) → (χ φ)) → (¬ ψφ))
76con1d 116 . . 3 (((ψφ) → (χ φ)) → (¬ φψ))
87com12 27 . 2 φ → (((ψφ) → (χ φ)) → ψ))
93, 8impbid 183 1 φ → (ψ ↔ ((ψφ) → (χ φ))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator