NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dedlemb GIF version

Theorem dedlemb 921
Description: Lemma for weak deduction theorem. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 7-May-2011.)
Assertion
Ref Expression
dedlemb φ → (χ ↔ ((ψ φ) (χ ¬ φ))))

Proof of Theorem dedlemb
StepHypRef Expression
1 olc 373 . . 3 ((χ ¬ φ) → ((ψ φ) (χ ¬ φ)))
21expcom 424 . 2 φ → (χ → ((ψ φ) (χ ¬ φ))))
3 pm2.21 100 . . . 4 φ → (φχ))
43adantld 453 . . 3 φ → ((ψ φ) → χ))
5 simpl 443 . . . 4 ((χ ¬ φ) → χ)
65a1i 10 . . 3 φ → ((χ ¬ φ) → χ))
74, 6jaod 369 . 2 φ → (((ψ φ) (χ ¬ φ)) → χ))
82, 7impbid 183 1 φ → (χ ↔ ((ψ φ) (χ ¬ φ))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wo 357   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by:  elimh  922  pm4.42  926  iffalse  3669
  Copyright terms: Public domain W3C validator