New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dedlemb | GIF version |
Description: Lemma for weak deduction theorem. (Contributed by NM, 15-May-1999.) (Proof shortened by Andrew Salmon, 7-May-2011.) |
Ref | Expression |
---|---|
dedlemb | ⊢ (¬ φ → (χ ↔ ((ψ ∧ φ) ∨ (χ ∧ ¬ φ)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olc 373 | . . 3 ⊢ ((χ ∧ ¬ φ) → ((ψ ∧ φ) ∨ (χ ∧ ¬ φ))) | |
2 | 1 | expcom 424 | . 2 ⊢ (¬ φ → (χ → ((ψ ∧ φ) ∨ (χ ∧ ¬ φ)))) |
3 | pm2.21 100 | . . . 4 ⊢ (¬ φ → (φ → χ)) | |
4 | 3 | adantld 453 | . . 3 ⊢ (¬ φ → ((ψ ∧ φ) → χ)) |
5 | simpl 443 | . . . 4 ⊢ ((χ ∧ ¬ φ) → χ) | |
6 | 5 | a1i 10 | . . 3 ⊢ (¬ φ → ((χ ∧ ¬ φ) → χ)) |
7 | 4, 6 | jaod 369 | . 2 ⊢ (¬ φ → (((ψ ∧ φ) ∨ (χ ∧ ¬ φ)) → χ)) |
8 | 2, 7 | impbid 183 | 1 ⊢ (¬ φ → (χ ↔ ((ψ ∧ φ) ∨ (χ ∧ ¬ φ)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: elimh 922 pm4.42 926 iffalse 3669 |
Copyright terms: Public domain | W3C validator |