New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm4.42 | GIF version |
Description: Theorem *4.42 of [WhiteheadRussell] p. 119. (Contributed by Roy F. Longton, 21-Jun-2005.) |
Ref | Expression |
---|---|
pm4.42 | ⊢ (φ ↔ ((φ ∧ ψ) ∨ (φ ∧ ¬ ψ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dedlema 920 | . 2 ⊢ (ψ → (φ ↔ ((φ ∧ ψ) ∨ (φ ∧ ¬ ψ)))) | |
2 | dedlemb 921 | . 2 ⊢ (¬ ψ → (φ ↔ ((φ ∧ ψ) ∨ (φ ∧ ¬ ψ)))) | |
3 | 1, 2 | pm2.61i 156 | 1 ⊢ (φ ↔ ((φ ∧ ψ) ∨ (φ ∧ ¬ ψ))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 176 ∨ wo 357 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 |
This theorem is referenced by: inundif 3629 |
Copyright terms: Public domain | W3C validator |