NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm4.42 GIF version

Theorem pm4.42 926
Description: Theorem *4.42 of [WhiteheadRussell] p. 119. (Contributed by Roy F. Longton, 21-Jun-2005.)
Assertion
Ref Expression
pm4.42 (φ ↔ ((φ ψ) (φ ¬ ψ)))

Proof of Theorem pm4.42
StepHypRef Expression
1 dedlema 920 . 2 (ψ → (φ ↔ ((φ ψ) (φ ¬ ψ))))
2 dedlemb 921 . 2 ψ → (φ ↔ ((φ ψ) (φ ¬ ψ))))
31, 2pm2.61i 156 1 (φ ↔ ((φ ψ) (φ ¬ ψ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   wo 357   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360
This theorem is referenced by:  inundif  3629
  Copyright terms: Public domain W3C validator