New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > adantld | GIF version |
Description: Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.) |
Ref | Expression |
---|---|
adantld.1 | ⊢ (φ → (ψ → χ)) |
Ref | Expression |
---|---|
adantld | ⊢ (φ → ((θ ∧ ψ) → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 447 | . 2 ⊢ ((θ ∧ ψ) → ψ) | |
2 | adantld.1 | . 2 ⊢ (φ → (ψ → χ)) | |
3 | 1, 2 | syl5 28 | 1 ⊢ (φ → ((θ ∧ ψ) → χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: jaoa 496 dedlema 920 dedlemb 921 prlem1 928 spimed 1977 equveli 1988 2eu3 2286 unineq 3506 tfinpw1 4495 tfinltfinlem1 4501 sfinltfin 4536 spfinsfincl 4540 vfinspsslem1 4551 clos1conn 5880 taddc 6230 nchoicelem12 6301 |
Copyright terms: Public domain | W3C validator |