NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  adantld GIF version

Theorem adantld 453
Description: Deduction adding a conjunct to the left of an antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 20-Dec-2012.)
Hypothesis
Ref Expression
adantld.1 (φ → (ψχ))
Assertion
Ref Expression
adantld (φ → ((θ ψ) → χ))

Proof of Theorem adantld
StepHypRef Expression
1 simpr 447 . 2 ((θ ψ) → ψ)
2 adantld.1 . 2 (φ → (ψχ))
31, 2syl5 28 1 (φ → ((θ ψ) → χ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  jaoa  496  dedlema  920  dedlemb  921  prlem1  928  spimed  1977  equveli  1988  2eu3  2286  unineq  3506  tfinpw1  4495  tfinltfinlem1  4501  sfinltfin  4536  spfinsfincl  4540  vfinspsslem1  4551  clos1conn  5880  taddc  6230  nchoicelem12  6301
  Copyright terms: Public domain W3C validator