New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > antird | GIF version |
Description: Deduce antisymmetry from its properties. (Contributed by SF, 12-Mar-2015.) |
Ref | Expression |
---|---|
antird.1 | ⊢ (φ → R ∈ V) |
antird.2 | ⊢ (φ → A ∈ W) |
antird.3 | ⊢ ((φ ∧ (x ∈ A ∧ y ∈ A) ∧ (xRy ∧ yRx)) → x = y) |
Ref | Expression |
---|---|
antird | ⊢ (φ → R Antisym A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | antird.3 | . . . 4 ⊢ ((φ ∧ (x ∈ A ∧ y ∈ A) ∧ (xRy ∧ yRx)) → x = y) | |
2 | 1 | 3expia 1153 | . . 3 ⊢ ((φ ∧ (x ∈ A ∧ y ∈ A)) → ((xRy ∧ yRx) → x = y)) |
3 | 2 | ralrimivva 2706 | . 2 ⊢ (φ → ∀x ∈ A ∀y ∈ A ((xRy ∧ yRx) → x = y)) |
4 | antird.1 | . . 3 ⊢ (φ → R ∈ V) | |
5 | antird.2 | . . 3 ⊢ (φ → A ∈ W) | |
6 | breq 4641 | . . . . . . 7 ⊢ (r = R → (xry ↔ xRy)) | |
7 | breq 4641 | . . . . . . 7 ⊢ (r = R → (yrx ↔ yRx)) | |
8 | 6, 7 | anbi12d 691 | . . . . . 6 ⊢ (r = R → ((xry ∧ yrx) ↔ (xRy ∧ yRx))) |
9 | 8 | imbi1d 308 | . . . . 5 ⊢ (r = R → (((xry ∧ yrx) → x = y) ↔ ((xRy ∧ yRx) → x = y))) |
10 | 9 | 2ralbidv 2656 | . . . 4 ⊢ (r = R → (∀x ∈ a ∀y ∈ a ((xry ∧ yrx) → x = y) ↔ ∀x ∈ a ∀y ∈ a ((xRy ∧ yRx) → x = y))) |
11 | raleq 2807 | . . . . 5 ⊢ (a = A → (∀y ∈ a ((xRy ∧ yRx) → x = y) ↔ ∀y ∈ A ((xRy ∧ yRx) → x = y))) | |
12 | 11 | raleqbi1dv 2815 | . . . 4 ⊢ (a = A → (∀x ∈ a ∀y ∈ a ((xRy ∧ yRx) → x = y) ↔ ∀x ∈ A ∀y ∈ A ((xRy ∧ yRx) → x = y))) |
13 | df-antisym 5901 | . . . 4 ⊢ Antisym = {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a ((xry ∧ yrx) → x = y)} | |
14 | 10, 12, 13 | brabg 4706 | . . 3 ⊢ ((R ∈ V ∧ A ∈ W) → (R Antisym A ↔ ∀x ∈ A ∀y ∈ A ((xRy ∧ yRx) → x = y))) |
15 | 4, 5, 14 | syl2anc 642 | . 2 ⊢ (φ → (R Antisym A ↔ ∀x ∈ A ∀y ∈ A ((xRy ∧ yRx) → x = y))) |
16 | 3, 15 | mpbird 223 | 1 ⊢ (φ → R Antisym A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 = wceq 1642 ∈ wcel 1710 ∀wral 2614 class class class wbr 4639 Antisym cantisym 5890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-antisym 5901 |
This theorem is referenced by: pod 5936 |
Copyright terms: Public domain | W3C validator |