Step | Hyp | Ref
| Expression |
1 | | df-antisym 5902 |
. . 3
⊢ Antisym = {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a ((xry ∧ yrx) → x =
y)} |
2 | | vex 2863 |
. . . . . . 7
⊢ r ∈
V |
3 | | vex 2863 |
. . . . . . 7
⊢ a ∈
V |
4 | 2, 3 | opex 4589 |
. . . . . 6
⊢ 〈r, a〉 ∈ V |
5 | 4 | elcompl 3226 |
. . . . 5
⊢ (〈r, a〉 ∈ ∼ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ∖ Ins3 I )) “
1c)) “ 1c) ↔ ¬ 〈r, a〉 ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ∖ Ins3 I )) “
1c)) “ 1c)) |
6 | | elin 3220 |
. . . . . . . . . 10
⊢ (〈{x}, 〈r, a〉〉 ∈ ( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∖ Ins3 I )) “
1c)) ↔ (〈{x}, 〈r, a〉〉 ∈ Ins2 S ∧ 〈{x}, 〈r, a〉〉 ∈ (( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∖ Ins3 I )) “
1c))) |
7 | 2 | otelins2 5792 |
. . . . . . . . . . . 12
⊢ (〈{x}, 〈r, a〉〉 ∈ Ins2 S ↔ 〈{x}, a〉 ∈ S
) |
8 | | vex 2863 |
. . . . . . . . . . . . 13
⊢ x ∈
V |
9 | 8, 3 | opelssetsn 4761 |
. . . . . . . . . . . 12
⊢ (〈{x}, a〉 ∈ S ↔ x ∈ a) |
10 | 7, 9 | bitri 240 |
. . . . . . . . . . 11
⊢ (〈{x}, 〈r, a〉〉 ∈ Ins2 S ↔ x ∈ a) |
11 | | elin 3220 |
. . . . . . . . . . . . . . 15
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ∖ Ins3 I )) ↔
(〈{y},
〈{x},
〈r,
a〉〉〉 ∈ Ins2 Ins2 S ∧ 〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins4 (((( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ∖ Ins3 I
))) |
12 | | snex 4112 |
. . . . . . . . . . . . . . . . . 18
⊢ {x} ∈
V |
13 | 12 | otelins2 5792 |
. . . . . . . . . . . . . . . . 17
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins2 Ins2 S ↔ 〈{y}, 〈r, a〉〉 ∈ Ins2 S ) |
14 | 2 | otelins2 5792 |
. . . . . . . . . . . . . . . . 17
⊢ (〈{y}, 〈r, a〉〉 ∈ Ins2 S ↔ 〈{y}, a〉 ∈ S
) |
15 | | vex 2863 |
. . . . . . . . . . . . . . . . . 18
⊢ y ∈
V |
16 | 15, 3 | opelssetsn 4761 |
. . . . . . . . . . . . . . . . 17
⊢ (〈{y}, a〉 ∈ S ↔ y ∈ a) |
17 | 13, 14, 16 | 3bitri 262 |
. . . . . . . . . . . . . . . 16
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins2 Ins2 S ↔ y ∈ a) |
18 | 3 | oqelins4 5795 |
. . . . . . . . . . . . . . . . 17
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins4 (((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∖ Ins3 I ) ↔
〈{y},
〈{x},
r〉〉 ∈ (((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∖ Ins3 I
)) |
19 | | eldif 3222 |
. . . . . . . . . . . . . . . . 17
⊢ (〈{y}, 〈{x}, r〉〉 ∈ (((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∖ Ins3 I ) ↔
(〈{y},
〈{x},
r〉〉 ∈ ((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∧ ¬ 〈{y}, 〈{x}, r〉〉 ∈ Ins3 I
)) |
20 | | elin 3220 |
. . . . . . . . . . . . . . . . . . 19
⊢ (〈{y}, 〈{x}, r〉〉 ∈ ((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ↔ (〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∧ 〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c))) |
21 | | elin 3220 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) ↔ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 (2nd ⊗
1st ) ∧ 〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins2 Ins2 S )) |
22 | 2 | oqelins4 5795 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 (2nd ⊗
1st ) ↔ 〈{p}, 〈{y}, {x}〉〉 ∈ SI3 (2nd ⊗
1st )) |
23 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ p ∈
V |
24 | 23, 15, 8 | otsnelsi3 5806 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (〈{p}, 〈{y}, {x}〉〉 ∈ SI3 (2nd ⊗
1st ) ↔ 〈p, 〈y, x〉〉 ∈ (2nd ⊗ 1st
)) |
25 | | oteltxp 5783 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (〈p, 〈y, x〉〉 ∈
(2nd ⊗ 1st ) ↔ (〈p, y〉 ∈ 2nd ∧
〈p,
x〉 ∈ 1st )) |
26 | | ancom 437 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((〈p, y〉 ∈ 2nd ∧
〈p,
x〉 ∈ 1st ) ↔ (〈p, x〉 ∈ 1st ∧
〈p,
y〉 ∈ 2nd )) |
27 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (p1st x ↔ 〈p, x〉 ∈
1st ) |
28 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (p2nd y ↔ 〈p, y〉 ∈
2nd ) |
29 | 27, 28 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((p1st x ∧ p2nd y) ↔ (〈p, x〉 ∈ 1st ∧
〈p,
y〉 ∈ 2nd )) |
30 | 26, 29 | bitr4i 243 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((〈p, y〉 ∈ 2nd ∧
〈p,
x〉 ∈ 1st ) ↔ (p1st x ∧ p2nd y)) |
31 | 8, 15 | op1st2nd 5791 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((p1st x ∧ p2nd y) ↔ p =
〈x,
y〉) |
32 | 25, 30, 31 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (〈p, 〈y, x〉〉 ∈
(2nd ⊗ 1st ) ↔ p = 〈x, y〉) |
33 | 22, 24, 32 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 (2nd ⊗
1st ) ↔ p = 〈x, y〉) |
34 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ {y} ∈
V |
35 | 34 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins2 Ins2 S ↔ 〈{p}, 〈{x}, r〉〉 ∈ Ins2 S ) |
36 | 12 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (〈{p}, 〈{x}, r〉〉 ∈ Ins2 S ↔ 〈{p}, r〉 ∈ S
) |
37 | 23, 2 | opelssetsn 4761 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (〈{p}, r〉 ∈ S ↔ p ∈ r) |
38 | 35, 36, 37 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins2 Ins2 S ↔ p ∈ r) |
39 | 33, 38 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 (2nd ⊗
1st ) ∧ 〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins2 Ins2 S ) ↔ (p = 〈x, y〉 ∧ p ∈ r)) |
40 | 21, 39 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) ↔ (p = 〈x, y〉 ∧ p ∈ r)) |
41 | 40 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∃p〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) ↔ ∃p(p = 〈x, y〉 ∧ p ∈ r)) |
42 | | elima1c 4948 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ↔ ∃p〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S )) |
43 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (xry ↔ 〈x, y〉 ∈ r) |
44 | | df-clel 2349 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (〈x, y〉 ∈ r ↔
∃p(p = 〈x, y〉 ∧ p ∈ r)) |
45 | 43, 44 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (xry ↔ ∃p(p = 〈x, y〉 ∧ p ∈ r)) |
46 | 41, 42, 45 | 3bitr4i 268 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ↔ xry) |
47 | | elin 3220 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 I ∩ Ins2 Ins2 S ) ↔ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 I ∧ 〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins2 Ins2 S )) |
48 | 2 | oqelins4 5795 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 I ↔ 〈{p}, 〈{y}, {x}〉〉 ∈ SI3 I ) |
49 | 23, 15, 8 | otsnelsi3 5806 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (〈{p}, 〈{y}, {x}〉〉 ∈ SI3 I ↔ 〈p, 〈y, x〉〉 ∈ I
) |
50 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (p I 〈y, x〉 ↔ 〈p, 〈y, x〉〉 ∈ I
) |
51 | 15, 8 | opex 4589 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ 〈y, x〉 ∈ V |
52 | 51 | ideq 4871 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (p I 〈y, x〉 ↔ p =
〈y,
x〉) |
53 | 49, 50, 52 | 3bitr2i 264 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (〈{p}, 〈{y}, {x}〉〉 ∈ SI3 I ↔ p = 〈y, x〉) |
54 | 48, 53 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 I ↔ p = 〈y, x〉) |
55 | 54, 38 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins4 SI3 I ∧ 〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ Ins2 Ins2 S ) ↔ (p =
〈y,
x〉 ∧ p ∈ r)) |
56 | 47, 55 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 I ∩ Ins2 Ins2 S ) ↔ (p =
〈y,
x〉 ∧ p ∈ r)) |
57 | 56 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (∃p〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 I ∩ Ins2 Ins2 S ) ↔ ∃p(p = 〈y, x〉 ∧ p ∈ r)) |
58 | | elima1c 4948 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ↔ ∃p〈{p}, 〈{y}, 〈{x}, r〉〉〉 ∈ ( Ins4 SI3 I ∩ Ins2 Ins2 S )) |
59 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (yrx ↔ 〈y, x〉 ∈ r) |
60 | | df-clel 2349 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (〈y, x〉 ∈ r ↔
∃p(p = 〈y, x〉 ∧ p ∈ r)) |
61 | 59, 60 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (yrx ↔ ∃p(p = 〈y, x〉 ∧ p ∈ r)) |
62 | 57, 58, 61 | 3bitr4i 268 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ↔ yrx) |
63 | 46, 62 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∧ 〈{y}, 〈{x}, r〉〉 ∈ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ↔ (xry ∧ yrx)) |
64 | 20, 63 | bitri 240 |
. . . . . . . . . . . . . . . . . 18
⊢ (〈{y}, 〈{x}, r〉〉 ∈ ((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ↔
(xry ∧ yrx)) |
65 | 2 | otelins3 5793 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (〈{y}, 〈{x}, r〉〉 ∈ Ins3 I ↔ 〈{y}, {x}〉 ∈ I ) |
66 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({y} I {x} ↔
〈{y},
{x}〉
∈ I ) |
67 | 12 | ideq 4871 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({y} I {x} ↔
{y} = {x}) |
68 | | eqcom 2355 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({y} = {x} ↔
{x} = {y}) |
69 | 8 | sneqb 3877 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ({x} = {y} ↔
x = y) |
70 | 67, 68, 69 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ({y} I {x} ↔
x = y) |
71 | 65, 66, 70 | 3bitr2i 264 |
. . . . . . . . . . . . . . . . . . 19
⊢ (〈{y}, 〈{x}, r〉〉 ∈ Ins3 I ↔ x =
y) |
72 | 71 | notbii 287 |
. . . . . . . . . . . . . . . . . 18
⊢ (¬ 〈{y}, 〈{x}, r〉〉 ∈ Ins3 I ↔ ¬ x = y) |
73 | 64, 72 | anbi12i 678 |
. . . . . . . . . . . . . . . . 17
⊢ ((〈{y}, 〈{x}, r〉〉 ∈ ((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∧ ¬ 〈{y}, 〈{x}, r〉〉 ∈ Ins3 I ) ↔
((xry ∧ yrx) ∧ ¬ x =
y)) |
74 | 18, 19, 73 | 3bitri 262 |
. . . . . . . . . . . . . . . 16
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins4 (((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∖ Ins3 I ) ↔
((xry ∧ yrx) ∧ ¬ x =
y)) |
75 | 17, 74 | anbi12i 678 |
. . . . . . . . . . . . . . 15
⊢ ((〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins2 Ins2 S ∧ 〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ Ins4 (((( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ∖ Ins3 I )) ↔
(y ∈
a ∧
((xry ∧ yrx) ∧ ¬ x =
y))) |
76 | 11, 75 | bitri 240 |
. . . . . . . . . . . . . 14
⊢ (〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ∖ Ins3 I )) ↔
(y ∈
a ∧
((xry ∧ yrx) ∧ ¬ x =
y))) |
77 | 76 | exbii 1582 |
. . . . . . . . . . . . 13
⊢ (∃y〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ∖ Ins3 I )) ↔
∃y(y ∈ a ∧ ((xry ∧ yrx) ∧ ¬ x =
y))) |
78 | | elima1c 4948 |
. . . . . . . . . . . . 13
⊢ (〈{x}, 〈r, a〉〉 ∈ (( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∖ Ins3 I )) “
1c) ↔ ∃y〈{y}, 〈{x}, 〈r, a〉〉〉 ∈ ( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∖ Ins3 I
))) |
79 | | df-rex 2621 |
. . . . . . . . . . . . 13
⊢ (∃y ∈ a ((xry ∧ yrx) ∧ ¬ x = y) ↔
∃y(y ∈ a ∧ ((xry ∧ yrx) ∧ ¬ x =
y))) |
80 | 77, 78, 79 | 3bitr4i 268 |
. . . . . . . . . . . 12
⊢ (〈{x}, 〈r, a〉〉 ∈ (( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∖ Ins3 I )) “
1c) ↔ ∃y ∈ a ((xry ∧ yrx) ∧ ¬ x =
y)) |
81 | | rexanali 2661 |
. . . . . . . . . . . 12
⊢ (∃y ∈ a ((xry ∧ yrx) ∧ ¬ x = y) ↔
¬ ∀y ∈ a ((xry ∧ yrx) →
x = y)) |
82 | 80, 81 | bitri 240 |
. . . . . . . . . . 11
⊢ (〈{x}, 〈r, a〉〉 ∈ (( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∖ Ins3 I )) “
1c) ↔ ¬ ∀y ∈ a ((xry ∧ yrx) → x =
y)) |
83 | 10, 82 | anbi12i 678 |
. . . . . . . . . 10
⊢ ((〈{x}, 〈r, a〉〉 ∈ Ins2 S ∧ 〈{x}, 〈r, a〉〉 ∈ (( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ∖ Ins3 I )) “
1c)) ↔ (x ∈ a ∧ ¬ ∀y ∈ a ((xry ∧ yrx) → x =
y))) |
84 | 6, 83 | bitri 240 |
. . . . . . . . 9
⊢ (〈{x}, 〈r, a〉〉 ∈ ( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∖ Ins3 I )) “
1c)) ↔ (x ∈ a ∧ ¬ ∀y ∈ a ((xry ∧ yrx) → x =
y))) |
85 | 84 | exbii 1582 |
. . . . . . . 8
⊢ (∃x〈{x}, 〈r, a〉〉 ∈ ( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∖ Ins3 I )) “
1c)) ↔ ∃x(x ∈ a ∧ ¬ ∀y ∈ a ((xry ∧ yrx) → x =
y))) |
86 | | elima1c 4948 |
. . . . . . . 8
⊢ (〈r, a〉 ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ∖ Ins3 I )) “
1c)) “ 1c) ↔ ∃x〈{x}, 〈r, a〉〉 ∈ ( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∖ Ins3 I )) “
1c))) |
87 | | df-rex 2621 |
. . . . . . . 8
⊢ (∃x ∈ a ¬ ∀y ∈ a ((xry ∧ yrx) → x =
y) ↔ ∃x(x ∈ a ∧ ¬ ∀y ∈ a ((xry ∧ yrx) → x =
y))) |
88 | 85, 86, 87 | 3bitr4i 268 |
. . . . . . 7
⊢ (〈r, a〉 ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ∖ Ins3 I )) “
1c)) “ 1c) ↔ ∃x ∈ a ¬ ∀y ∈ a ((xry ∧ yrx) → x =
y)) |
89 | | rexnal 2626 |
. . . . . . 7
⊢ (∃x ∈ a ¬ ∀y ∈ a ((xry ∧ yrx) → x =
y) ↔ ¬ ∀x ∈ a ∀y ∈ a ((xry ∧ yrx) → x =
y)) |
90 | 88, 89 | bitri 240 |
. . . . . 6
⊢ (〈r, a〉 ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ∖ Ins3 I )) “
1c)) “ 1c) ↔ ¬ ∀x ∈ a ∀y ∈ a ((xry ∧ yrx) → x =
y)) |
91 | 90 | con2bii 322 |
. . . . 5
⊢ (∀x ∈ a ∀y ∈ a ((xry ∧ yrx) → x =
y) ↔ ¬ 〈r, a〉 ∈ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ∖ Ins3 I )) “
1c)) “ 1c)) |
92 | 5, 91 | bitr4i 243 |
. . . 4
⊢ (〈r, a〉 ∈ ∼ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ∖ Ins3 I )) “
1c)) “ 1c) ↔ ∀x ∈ a ∀y ∈ a ((xry ∧ yrx) → x =
y)) |
93 | 92 | opabbi2i 4867 |
. . 3
⊢ ∼ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∖ Ins3 I )) “
1c)) “ 1c) = {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a ((xry ∧ yrx) →
x = y)} |
94 | 1, 93 | eqtr4i 2376 |
. 2
⊢ Antisym = ∼ (( Ins2
S ∩ (( Ins2
Ins2 S ∩ Ins4 (((( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ∖ Ins3 I )) “
1c)) “ 1c) |
95 | | ssetex 4745 |
. . . . . 6
⊢ S ∈
V |
96 | 95 | ins2ex 5798 |
. . . . 5
⊢ Ins2 S ∈ V |
97 | 96 | ins2ex 5798 |
. . . . . . 7
⊢ Ins2 Ins2 S ∈
V |
98 | | 2ndex 5113 |
. . . . . . . . . . . . . . 15
⊢ 2nd
∈ V |
99 | | 1stex 4740 |
. . . . . . . . . . . . . . 15
⊢ 1st
∈ V |
100 | 98, 99 | txpex 5786 |
. . . . . . . . . . . . . 14
⊢ (2nd
⊗ 1st ) ∈
V |
101 | 100 | si3ex 5807 |
. . . . . . . . . . . . 13
⊢ SI3 (2nd ⊗
1st ) ∈ V |
102 | 101 | ins4ex 5800 |
. . . . . . . . . . . 12
⊢ Ins4 SI3
(2nd ⊗ 1st ) ∈
V |
103 | 102, 97 | inex 4106 |
. . . . . . . . . . 11
⊢ ( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) ∈
V |
104 | | 1cex 4143 |
. . . . . . . . . . 11
⊢
1c ∈
V |
105 | 103, 104 | imaex 4748 |
. . . . . . . . . 10
⊢ (( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∈ V |
106 | | idex 5505 |
. . . . . . . . . . . . . 14
⊢ I ∈ V |
107 | 106 | si3ex 5807 |
. . . . . . . . . . . . 13
⊢ SI3 I ∈ V |
108 | 107 | ins4ex 5800 |
. . . . . . . . . . . 12
⊢ Ins4 SI3
I ∈ V |
109 | 108, 97 | inex 4106 |
. . . . . . . . . . 11
⊢ ( Ins4 SI3
I ∩ Ins2 Ins2
S ) ∈
V |
110 | 109, 104 | imaex 4748 |
. . . . . . . . . 10
⊢ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c) ∈ V |
111 | 105, 110 | inex 4106 |
. . . . . . . . 9
⊢ ((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∈ V |
112 | 106 | ins3ex 5799 |
. . . . . . . . 9
⊢ Ins3 I ∈
V |
113 | 111, 112 | difex 4108 |
. . . . . . . 8
⊢ (((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∖ Ins3 I ) ∈ V |
114 | 113 | ins4ex 5800 |
. . . . . . 7
⊢ Ins4 (((( Ins4 SI3 (2nd ⊗
1st ) ∩ Ins2 Ins2 S ) “
1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ∖ Ins3 I ) ∈ V |
115 | 97, 114 | inex 4106 |
. . . . . 6
⊢ ( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∖ Ins3 I )) ∈ V |
116 | 115, 104 | imaex 4748 |
. . . . 5
⊢ (( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∖ Ins3 I )) “
1c) ∈ V |
117 | 96, 116 | inex 4106 |
. . . 4
⊢ ( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∖ Ins3 I )) “
1c)) ∈ V |
118 | 117, 104 | imaex 4748 |
. . 3
⊢ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∖ Ins3 I )) “
1c)) “ 1c) ∈ V |
119 | 118 | complex 4105 |
. 2
⊢ ∼ (( Ins2 S ∩ (( Ins2 Ins2 S ∩ Ins4 (((( Ins4 SI3
(2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3
I ∩ Ins2 Ins2
S ) “ 1c)) ∖ Ins3 I )) “
1c)) “ 1c) ∈ V |
120 | 94, 119 | eqeltri 2423 |
1
⊢ Antisym ∈
V |