NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  antisymex GIF version

Theorem antisymex 5913
Description: The class of all antisymmetric relationships is a set. (Contributed by SF, 11-Mar-2015.)
Assertion
Ref Expression
antisymex Antisym V

Proof of Theorem antisymex
Dummy variables p a r x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-antisym 5902 . . 3 Antisym = {r, a x a y a ((xry yrx) → x = y)}
2 vex 2863 . . . . . . 7 r V
3 vex 2863 . . . . . . 7 a V
42, 3opex 4589 . . . . . 6 r, a V
54elcompl 3226 . . . . 5 (r, a ∼ (( Ins2 S ∩ (( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) “ 1c)) “ 1c) ↔ ¬ r, a (( Ins2 S ∩ (( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) “ 1c)) “ 1c))
6 elin 3220 . . . . . . . . . 10 ({x}, r, a ( Ins2 S ∩ (( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) “ 1c)) ↔ ({x}, r, a Ins2 S {x}, r, a (( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) “ 1c)))
72otelins2 5792 . . . . . . . . . . . 12 ({x}, r, a Ins2 S {x}, a S )
8 vex 2863 . . . . . . . . . . . . 13 x V
98, 3opelssetsn 4761 . . . . . . . . . . . 12 ({x}, a S x a)
107, 9bitri 240 . . . . . . . . . . 11 ({x}, r, a Ins2 S x a)
11 elin 3220 . . . . . . . . . . . . . . 15 ({y}, {x}, r, a ( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) ↔ ({y}, {x}, r, a Ins2 Ins2 S {y}, {x}, r, a Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )))
12 snex 4112 . . . . . . . . . . . . . . . . . 18 {x} V
1312otelins2 5792 . . . . . . . . . . . . . . . . 17 ({y}, {x}, r, a Ins2 Ins2 S {y}, r, a Ins2 S )
142otelins2 5792 . . . . . . . . . . . . . . . . 17 ({y}, r, a Ins2 S {y}, a S )
15 vex 2863 . . . . . . . . . . . . . . . . . 18 y V
1615, 3opelssetsn 4761 . . . . . . . . . . . . . . . . 17 ({y}, a S y a)
1713, 14, 163bitri 262 . . . . . . . . . . . . . . . 16 ({y}, {x}, r, a Ins2 Ins2 S y a)
183oqelins4 5795 . . . . . . . . . . . . . . . . 17 ({y}, {x}, r, a Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I ) ↔ {y}, {x}, r (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I ))
19 eldif 3222 . . . . . . . . . . . . . . . . 17 ({y}, {x}, r (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I ) ↔ ({y}, {x}, r ((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ¬ {y}, {x}, r Ins3 I ))
20 elin 3220 . . . . . . . . . . . . . . . . . . 19 ({y}, {x}, r ((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ↔ ({y}, {x}, r (( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) {y}, {x}, r (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)))
21 elin 3220 . . . . . . . . . . . . . . . . . . . . . . 23 ({p}, {y}, {x}, r ( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) ↔ ({p}, {y}, {x}, r Ins4 SI3 (2nd ⊗ 1st ) {p}, {y}, {x}, r Ins2 Ins2 S ))
222oqelins4 5795 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({p}, {y}, {x}, r Ins4 SI3 (2nd ⊗ 1st ) ↔ {p}, {y}, {x} SI3 (2nd ⊗ 1st ))
23 vex 2863 . . . . . . . . . . . . . . . . . . . . . . . . . 26 p V
2423, 15, 8otsnelsi3 5806 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({p}, {y}, {x} SI3 (2nd ⊗ 1st ) ↔ p, y, x (2nd ⊗ 1st ))
25 oteltxp 5783 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (p, y, x (2nd ⊗ 1st ) ↔ (p, y 2nd p, x 1st ))
26 ancom 437 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((p, y 2nd p, x 1st ) ↔ (p, x 1st p, y 2nd ))
27 df-br 4641 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (p1st xp, x 1st )
28 df-br 4641 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (p2nd yp, y 2nd )
2927, 28anbi12i 678 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((p1st x p2nd y) ↔ (p, x 1st p, y 2nd ))
3026, 29bitr4i 243 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((p, y 2nd p, x 1st ) ↔ (p1st x p2nd y))
318, 15op1st2nd 5791 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((p1st x p2nd y) ↔ p = x, y)
3225, 30, 313bitri 262 . . . . . . . . . . . . . . . . . . . . . . . . 25 (p, y, x (2nd ⊗ 1st ) ↔ p = x, y)
3322, 24, 323bitri 262 . . . . . . . . . . . . . . . . . . . . . . . 24 ({p}, {y}, {x}, r Ins4 SI3 (2nd ⊗ 1st ) ↔ p = x, y)
34 snex 4112 . . . . . . . . . . . . . . . . . . . . . . . . . 26 {y} V
3534otelins2 5792 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({p}, {y}, {x}, r Ins2 Ins2 S {p}, {x}, r Ins2 S )
3612otelins2 5792 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({p}, {x}, r Ins2 S {p}, r S )
3723, 2opelssetsn 4761 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({p}, r S p r)
3835, 36, 373bitri 262 . . . . . . . . . . . . . . . . . . . . . . . 24 ({p}, {y}, {x}, r Ins2 Ins2 S p r)
3933, 38anbi12i 678 . . . . . . . . . . . . . . . . . . . . . . 23 (({p}, {y}, {x}, r Ins4 SI3 (2nd ⊗ 1st ) {p}, {y}, {x}, r Ins2 Ins2 S ) ↔ (p = x, y p r))
4021, 39bitri 240 . . . . . . . . . . . . . . . . . . . . . 22 ({p}, {y}, {x}, r ( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) ↔ (p = x, y p r))
4140exbii 1582 . . . . . . . . . . . . . . . . . . . . 21 (p{p}, {y}, {x}, r ( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) ↔ p(p = x, y p r))
42 elima1c 4948 . . . . . . . . . . . . . . . . . . . . 21 ({y}, {x}, r (( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ↔ p{p}, {y}, {x}, r ( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ))
43 df-br 4641 . . . . . . . . . . . . . . . . . . . . . 22 (xryx, y r)
44 df-clel 2349 . . . . . . . . . . . . . . . . . . . . . 22 (x, y rp(p = x, y p r))
4543, 44bitri 240 . . . . . . . . . . . . . . . . . . . . 21 (xryp(p = x, y p r))
4641, 42, 453bitr4i 268 . . . . . . . . . . . . . . . . . . . 20 ({y}, {x}, r (( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ↔ xry)
47 elin 3220 . . . . . . . . . . . . . . . . . . . . . . 23 ({p}, {y}, {x}, r ( Ins4 SI3 I ∩ Ins2 Ins2 S ) ↔ ({p}, {y}, {x}, r Ins4 SI3 I {p}, {y}, {x}, r Ins2 Ins2 S ))
482oqelins4 5795 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({p}, {y}, {x}, r Ins4 SI3 I ↔ {p}, {y}, {x} SI3 I )
4923, 15, 8otsnelsi3 5806 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ({p}, {y}, {x} SI3 I ↔ p, y, x I )
50 df-br 4641 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (p I y, xp, y, x I )
5115, 8opex 4589 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 y, x V
5251ideq 4871 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (p I y, xp = y, x)
5349, 50, 523bitr2i 264 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({p}, {y}, {x} SI3 I ↔ p = y, x)
5448, 53bitri 240 . . . . . . . . . . . . . . . . . . . . . . . 24 ({p}, {y}, {x}, r Ins4 SI3 I ↔ p = y, x)
5554, 38anbi12i 678 . . . . . . . . . . . . . . . . . . . . . . 23 (({p}, {y}, {x}, r Ins4 SI3 I {p}, {y}, {x}, r Ins2 Ins2 S ) ↔ (p = y, x p r))
5647, 55bitri 240 . . . . . . . . . . . . . . . . . . . . . 22 ({p}, {y}, {x}, r ( Ins4 SI3 I ∩ Ins2 Ins2 S ) ↔ (p = y, x p r))
5756exbii 1582 . . . . . . . . . . . . . . . . . . . . 21 (p{p}, {y}, {x}, r ( Ins4 SI3 I ∩ Ins2 Ins2 S ) ↔ p(p = y, x p r))
58 elima1c 4948 . . . . . . . . . . . . . . . . . . . . 21 ({y}, {x}, r (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ↔ p{p}, {y}, {x}, r ( Ins4 SI3 I ∩ Ins2 Ins2 S ))
59 df-br 4641 . . . . . . . . . . . . . . . . . . . . . 22 (yrxy, x r)
60 df-clel 2349 . . . . . . . . . . . . . . . . . . . . . 22 (y, x rp(p = y, x p r))
6159, 60bitri 240 . . . . . . . . . . . . . . . . . . . . 21 (yrxp(p = y, x p r))
6257, 58, 613bitr4i 268 . . . . . . . . . . . . . . . . . . . 20 ({y}, {x}, r (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) ↔ yrx)
6346, 62anbi12i 678 . . . . . . . . . . . . . . . . . . 19 (({y}, {x}, r (( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) {y}, {x}, r (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ↔ (xry yrx))
6420, 63bitri 240 . . . . . . . . . . . . . . . . . 18 ({y}, {x}, r ((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ↔ (xry yrx))
652otelins3 5793 . . . . . . . . . . . . . . . . . . . 20 ({y}, {x}, r Ins3 I ↔ {y}, {x} I )
66 df-br 4641 . . . . . . . . . . . . . . . . . . . 20 ({y} I {x} ↔ {y}, {x} I )
6712ideq 4871 . . . . . . . . . . . . . . . . . . . . 21 ({y} I {x} ↔ {y} = {x})
68 eqcom 2355 . . . . . . . . . . . . . . . . . . . . 21 ({y} = {x} ↔ {x} = {y})
698sneqb 3877 . . . . . . . . . . . . . . . . . . . . 21 ({x} = {y} ↔ x = y)
7067, 68, 693bitri 262 . . . . . . . . . . . . . . . . . . . 20 ({y} I {x} ↔ x = y)
7165, 66, 703bitr2i 264 . . . . . . . . . . . . . . . . . . 19 ({y}, {x}, r Ins3 I ↔ x = y)
7271notbii 287 . . . . . . . . . . . . . . . . . 18 {y}, {x}, r Ins3 I ↔ ¬ x = y)
7364, 72anbi12i 678 . . . . . . . . . . . . . . . . 17 (({y}, {x}, r ((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) ¬ {y}, {x}, r Ins3 I ) ↔ ((xry yrx) ¬ x = y))
7418, 19, 733bitri 262 . . . . . . . . . . . . . . . 16 ({y}, {x}, r, a Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I ) ↔ ((xry yrx) ¬ x = y))
7517, 74anbi12i 678 . . . . . . . . . . . . . . 15 (({y}, {x}, r, a Ins2 Ins2 S {y}, {x}, r, a Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) ↔ (y a ((xry yrx) ¬ x = y)))
7611, 75bitri 240 . . . . . . . . . . . . . 14 ({y}, {x}, r, a ( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) ↔ (y a ((xry yrx) ¬ x = y)))
7776exbii 1582 . . . . . . . . . . . . 13 (y{y}, {x}, r, a ( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) ↔ y(y a ((xry yrx) ¬ x = y)))
78 elima1c 4948 . . . . . . . . . . . . 13 ({x}, r, a (( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) “ 1c) ↔ y{y}, {x}, r, a ( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )))
79 df-rex 2621 . . . . . . . . . . . . 13 (y a ((xry yrx) ¬ x = y) ↔ y(y a ((xry yrx) ¬ x = y)))
8077, 78, 793bitr4i 268 . . . . . . . . . . . 12 ({x}, r, a (( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) “ 1c) ↔ y a ((xry yrx) ¬ x = y))
81 rexanali 2661 . . . . . . . . . . . 12 (y a ((xry yrx) ¬ x = y) ↔ ¬ y a ((xry yrx) → x = y))
8280, 81bitri 240 . . . . . . . . . . 11 ({x}, r, a (( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) “ 1c) ↔ ¬ y a ((xry yrx) → x = y))
8310, 82anbi12i 678 . . . . . . . . . 10 (({x}, r, a Ins2 S {x}, r, a (( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) “ 1c)) ↔ (x a ¬ y a ((xry yrx) → x = y)))
846, 83bitri 240 . . . . . . . . 9 ({x}, r, a ( Ins2 S ∩ (( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) “ 1c)) ↔ (x a ¬ y a ((xry yrx) → x = y)))
8584exbii 1582 . . . . . . . 8 (x{x}, r, a ( Ins2 S ∩ (( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) “ 1c)) ↔ x(x a ¬ y a ((xry yrx) → x = y)))
86 elima1c 4948 . . . . . . . 8 (r, a (( Ins2 S ∩ (( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) “ 1c)) “ 1c) ↔ x{x}, r, a ( Ins2 S ∩ (( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) “ 1c)))
87 df-rex 2621 . . . . . . . 8 (x a ¬ y a ((xry yrx) → x = y) ↔ x(x a ¬ y a ((xry yrx) → x = y)))
8885, 86, 873bitr4i 268 . . . . . . 7 (r, a (( Ins2 S ∩ (( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) “ 1c)) “ 1c) ↔ x a ¬ y a ((xry yrx) → x = y))
89 rexnal 2626 . . . . . . 7 (x a ¬ y a ((xry yrx) → x = y) ↔ ¬ x a y a ((xry yrx) → x = y))
9088, 89bitri 240 . . . . . 6 (r, a (( Ins2 S ∩ (( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) “ 1c)) “ 1c) ↔ ¬ x a y a ((xry yrx) → x = y))
9190con2bii 322 . . . . 5 (x a y a ((xry yrx) → x = y) ↔ ¬ r, a (( Ins2 S ∩ (( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) “ 1c)) “ 1c))
925, 91bitr4i 243 . . . 4 (r, a ∼ (( Ins2 S ∩ (( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) “ 1c)) “ 1c) ↔ x a y a ((xry yrx) → x = y))
9392opabbi2i 4867 . . 3 ∼ (( Ins2 S ∩ (( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) “ 1c)) “ 1c) = {r, a x a y a ((xry yrx) → x = y)}
941, 93eqtr4i 2376 . 2 Antisym = ∼ (( Ins2 S ∩ (( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) “ 1c)) “ 1c)
95 ssetex 4745 . . . . . 6 S V
9695ins2ex 5798 . . . . 5 Ins2 S V
9796ins2ex 5798 . . . . . . 7 Ins2 Ins2 S V
98 2ndex 5113 . . . . . . . . . . . . . . 15 2nd V
99 1stex 4740 . . . . . . . . . . . . . . 15 1st V
10098, 99txpex 5786 . . . . . . . . . . . . . 14 (2nd ⊗ 1st ) V
101100si3ex 5807 . . . . . . . . . . . . 13 SI3 (2nd ⊗ 1st ) V
102101ins4ex 5800 . . . . . . . . . . . 12 Ins4 SI3 (2nd ⊗ 1st ) V
103102, 97inex 4106 . . . . . . . . . . 11 ( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) V
104 1cex 4143 . . . . . . . . . . 11 1c V
105103, 104imaex 4748 . . . . . . . . . 10 (( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) V
106 idex 5505 . . . . . . . . . . . . . 14 I V
107106si3ex 5807 . . . . . . . . . . . . 13 SI3 I V
108107ins4ex 5800 . . . . . . . . . . . 12 Ins4 SI3 I V
109108, 97inex 4106 . . . . . . . . . . 11 ( Ins4 SI3 I ∩ Ins2 Ins2 S ) V
110109, 104imaex 4748 . . . . . . . . . 10 (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c) V
111105, 110inex 4106 . . . . . . . . 9 ((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) V
112106ins3ex 5799 . . . . . . . . 9 Ins3 I V
113111, 112difex 4108 . . . . . . . 8 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I ) V
114113ins4ex 5800 . . . . . . 7 Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I ) V
11597, 114inex 4106 . . . . . 6 ( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) V
116115, 104imaex 4748 . . . . 5 (( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) “ 1c) V
11796, 116inex 4106 . . . 4 ( Ins2 S ∩ (( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) “ 1c)) V
118117, 104imaex 4748 . . 3 (( Ins2 S ∩ (( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) “ 1c)) “ 1c) V
119118complex 4105 . 2 ∼ (( Ins2 S ∩ (( Ins2 Ins2 S Ins4 (((( Ins4 SI3 (2nd ⊗ 1st ) ∩ Ins2 Ins2 S ) “ 1c) ∩ (( Ins4 SI3 I ∩ Ins2 Ins2 S ) “ 1c)) Ins3 I )) “ 1c)) “ 1c) V
12094, 119eqeltri 2423 1 Antisym V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358  wex 1541   = wceq 1642   wcel 1710  wral 2615  wrex 2616  Vcvv 2860  ccompl 3206   cdif 3207  cin 3209  {csn 3738  1cc1c 4135  cop 4562  {copab 4623   class class class wbr 4640  1st c1st 4718   S csset 4720  cima 4723   I cid 4764  2nd c2nd 4784  ctxp 5736   Ins2 cins2 5750   Ins3 cins3 5752   Ins4 cins4 5756   SI3 csi3 5758   Antisym cantisym 5891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-cnv 4786  df-2nd 4798  df-txp 5737  df-ins2 5751  df-ins3 5753  df-ins4 5757  df-si3 5759  df-antisym 5902
This theorem is referenced by:  partialex  5918
  Copyright terms: Public domain W3C validator