Step | Hyp | Ref
| Expression |
1 | | antid.4 |
. 2
⊢ (φ → XRY) |
2 | | antid.5 |
. 2
⊢ (φ → YRX) |
3 | | antid.1 |
. . . 4
⊢ (φ → R Antisym A) |
4 | | brex 4690 |
. . . . . 6
⊢ (R Antisym A → (R
∈ V ∧
A ∈
V)) |
5 | | breq 4642 |
. . . . . . . . . 10
⊢ (r = R →
(xry ↔
xRy)) |
6 | | breq 4642 |
. . . . . . . . . 10
⊢ (r = R →
(yrx ↔
yRx)) |
7 | 5, 6 | anbi12d 691 |
. . . . . . . . 9
⊢ (r = R →
((xry ∧ yrx) ↔
(xRy ∧ yRx))) |
8 | 7 | imbi1d 308 |
. . . . . . . 8
⊢ (r = R →
(((xry ∧ yrx) →
x = y)
↔ ((xRy ∧ yRx) →
x = y))) |
9 | 8 | 2ralbidv 2657 |
. . . . . . 7
⊢ (r = R →
(∀x
∈ a ∀y ∈ a ((xry ∧ yrx) → x =
y) ↔ ∀x ∈ a ∀y ∈ a ((xRy ∧ yRx) → x =
y))) |
10 | | raleq 2808 |
. . . . . . . 8
⊢ (a = A →
(∀y
∈ a
((xRy ∧ yRx) →
x = y)
↔ ∀y ∈ A ((xRy ∧ yRx) →
x = y))) |
11 | 10 | raleqbi1dv 2816 |
. . . . . . 7
⊢ (a = A →
(∀x
∈ a ∀y ∈ a ((xRy ∧ yRx) → x =
y) ↔ ∀x ∈ A ∀y ∈ A ((xRy ∧ yRx) → x =
y))) |
12 | | df-antisym 5902 |
. . . . . . 7
⊢ Antisym = {〈r, a〉 ∣ ∀x ∈ a ∀y ∈ a ((xry ∧ yrx) → x =
y)} |
13 | 9, 11, 12 | brabg 4707 |
. . . . . 6
⊢ ((R ∈ V ∧ A ∈ V) → (R
Antisym A
↔ ∀x ∈ A ∀y ∈ A ((xRy ∧ yRx) →
x = y))) |
14 | 4, 13 | syl 15 |
. . . . 5
⊢ (R Antisym A → (R
Antisym A
↔ ∀x ∈ A ∀y ∈ A ((xRy ∧ yRx) →
x = y))) |
15 | 14 | ibi 232 |
. . . 4
⊢ (R Antisym A → ∀x ∈ A ∀y ∈ A ((xRy ∧ yRx) → x =
y)) |
16 | 3, 15 | syl 15 |
. . 3
⊢ (φ → ∀x ∈ A ∀y ∈ A ((xRy ∧ yRx) → x =
y)) |
17 | | antid.2 |
. . . 4
⊢ (φ → X ∈ A) |
18 | | antid.3 |
. . . 4
⊢ (φ → Y ∈ A) |
19 | | breq1 4643 |
. . . . . . 7
⊢ (x = X →
(xRy ↔
XRy)) |
20 | | breq2 4644 |
. . . . . . 7
⊢ (x = X →
(yRx ↔
yRX)) |
21 | 19, 20 | anbi12d 691 |
. . . . . 6
⊢ (x = X →
((xRy ∧ yRx) ↔
(XRy ∧ yRX))) |
22 | | eqeq1 2359 |
. . . . . 6
⊢ (x = X →
(x = y
↔ X = y)) |
23 | 21, 22 | imbi12d 311 |
. . . . 5
⊢ (x = X →
(((xRy ∧ yRx) →
x = y)
↔ ((XRy ∧ yRX) →
X = y))) |
24 | | breq2 4644 |
. . . . . . 7
⊢ (y = Y →
(XRy ↔
XRY)) |
25 | | breq1 4643 |
. . . . . . 7
⊢ (y = Y →
(yRX ↔
YRX)) |
26 | 24, 25 | anbi12d 691 |
. . . . . 6
⊢ (y = Y →
((XRy ∧ yRX) ↔
(XRY ∧ YRX))) |
27 | | eqeq2 2362 |
. . . . . 6
⊢ (y = Y →
(X = y
↔ X = Y)) |
28 | 26, 27 | imbi12d 311 |
. . . . 5
⊢ (y = Y →
(((XRy ∧ yRX) →
X = y)
↔ ((XRY ∧ YRX) →
X = Y))) |
29 | 23, 28 | rspc2v 2962 |
. . . 4
⊢ ((X ∈ A ∧ Y ∈ A) → (∀x ∈ A ∀y ∈ A ((xRy ∧ yRx) → x =
y) → ((XRY ∧ YRX) → X =
Y))) |
30 | 17, 18, 29 | syl2anc 642 |
. . 3
⊢ (φ → (∀x ∈ A ∀y ∈ A ((xRy ∧ yRx) → x =
y) → ((XRY ∧ YRX) → X =
Y))) |
31 | 16, 30 | mpd 14 |
. 2
⊢ (φ → ((XRY ∧ YRX) → X =
Y)) |
32 | 1, 2, 31 | mp2and 660 |
1
⊢ (φ → X = Y) |