New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > hadbi123d | GIF version |
Description: Equality theorem for half adder. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
hadbid.1 | ⊢ (φ → (ψ ↔ χ)) |
hadbid.2 | ⊢ (φ → (θ ↔ τ)) |
hadbid.3 | ⊢ (φ → (η ↔ ζ)) |
Ref | Expression |
---|---|
hadbi123d | ⊢ (φ → (hadd(ψ, θ, η) ↔ hadd(χ, τ, ζ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hadbid.1 | . . . 4 ⊢ (φ → (ψ ↔ χ)) | |
2 | hadbid.2 | . . . 4 ⊢ (φ → (θ ↔ τ)) | |
3 | 1, 2 | xorbi12d 1315 | . . 3 ⊢ (φ → ((ψ ⊻ θ) ↔ (χ ⊻ τ))) |
4 | hadbid.3 | . . 3 ⊢ (φ → (η ↔ ζ)) | |
5 | 3, 4 | xorbi12d 1315 | . 2 ⊢ (φ → (((ψ ⊻ θ) ⊻ η) ↔ ((χ ⊻ τ) ⊻ ζ))) |
6 | df-had 1380 | . 2 ⊢ (hadd(ψ, θ, η) ↔ ((ψ ⊻ θ) ⊻ η)) | |
7 | df-had 1380 | . 2 ⊢ (hadd(χ, τ, ζ) ↔ ((χ ⊻ τ) ⊻ ζ)) | |
8 | 5, 6, 7 | 3bitr4g 279 | 1 ⊢ (φ → (hadd(ψ, θ, η) ↔ hadd(χ, τ, ζ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ⊻ wxo 1304 haddwhad 1378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-xor 1305 df-had 1380 |
This theorem is referenced by: hadbi123i 1384 |
Copyright terms: Public domain | W3C validator |