New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-had | GIF version |
Description: Define the half adder (triple XOR). (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
df-had | ⊢ (hadd(φ, ψ, χ) ↔ ((φ ⊻ ψ) ⊻ χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff φ | |
2 | wps | . . 3 wff ψ | |
3 | wch | . . 3 wff χ | |
4 | 1, 2, 3 | whad 1378 | . 2 wff hadd(φ, ψ, χ) |
5 | 1, 2 | wxo 1304 | . . 3 wff (φ ⊻ ψ) |
6 | 5, 3 | wxo 1304 | . 2 wff ((φ ⊻ ψ) ⊻ χ) |
7 | 4, 6 | wb 176 | 1 wff (hadd(φ, ψ, χ) ↔ ((φ ⊻ ψ) ⊻ χ)) |
Colors of variables: wff setvar class |
This definition is referenced by: hadbi123d 1382 hadass 1386 hadbi 1387 hadcoma 1388 hadnot 1393 |
Copyright terms: Public domain | W3C validator |