New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cadcoma | GIF version |
Description: Commutative law for adder carry. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
cadcoma | ⊢ (cadd(φ, ψ, χ) ↔ cadd(ψ, φ, χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 437 | . . 3 ⊢ ((φ ∧ ψ) ↔ (ψ ∧ φ)) | |
2 | xorcom 1307 | . . . 4 ⊢ ((φ ⊻ ψ) ↔ (ψ ⊻ φ)) | |
3 | 2 | anbi2i 675 | . . 3 ⊢ ((χ ∧ (φ ⊻ ψ)) ↔ (χ ∧ (ψ ⊻ φ))) |
4 | 1, 3 | orbi12i 507 | . 2 ⊢ (((φ ∧ ψ) ∨ (χ ∧ (φ ⊻ ψ))) ↔ ((ψ ∧ φ) ∨ (χ ∧ (ψ ⊻ φ)))) |
5 | df-cad 1381 | . 2 ⊢ (cadd(φ, ψ, χ) ↔ ((φ ∧ ψ) ∨ (χ ∧ (φ ⊻ ψ)))) | |
6 | df-cad 1381 | . 2 ⊢ (cadd(ψ, φ, χ) ↔ ((ψ ∧ φ) ∨ (χ ∧ (ψ ⊻ φ)))) | |
7 | 4, 5, 6 | 3bitr4i 268 | 1 ⊢ (cadd(φ, ψ, χ) ↔ cadd(ψ, φ, χ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∨ wo 357 ∧ wa 358 ⊻ wxo 1304 caddwcad 1379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-xor 1305 df-cad 1381 |
This theorem is referenced by: cadrot 1397 |
Copyright terms: Public domain | W3C validator |