Step | Hyp | Ref
| Expression |
1 | | elex 2868 |
. 2
⊢ (A ∈ V → A ∈ V) |
2 | | elex 2868 |
. 2
⊢ (B ∈ W → B ∈ V) |
3 | | df-cok 4191 |
. . . . 5
⊢ (C ∘k D) = (( Ins2k C ∩ Ins3k ◡kD) “k V) |
4 | 3 | eleq2i 2417 |
. . . 4
⊢ (⟪A, B⟫
∈ (C
∘k D) ↔ ⟪A, B⟫
∈ (( Ins2k C ∩ Ins3k ◡kD) “k V)) |
5 | | opkex 4114 |
. . . . 5
⊢ ⟪A, B⟫
∈ V |
6 | 5 | elimakv 4261 |
. . . 4
⊢ (⟪A, B⟫
∈ (( Ins2k C ∩ Ins3k ◡kD) “k V) ↔ ∃y⟪y,
⟪A, B⟫⟫ ∈ ( Ins2k C ∩ Ins3k ◡kD)) |
7 | | vex 2863 |
. . . . . . . . . 10
⊢ y ∈
V |
8 | | opkelins2kg 4252 |
. . . . . . . . . 10
⊢ ((y ∈ V ∧ ⟪A,
B⟫ ∈ V) → (⟪y, ⟪A,
B⟫⟫ ∈ Ins2k C ↔ ∃x∃z∃w(y = {{x}} ∧ ⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C))) |
9 | 7, 5, 8 | mp2an 653 |
. . . . . . . . 9
⊢ (⟪y, ⟪A,
B⟫⟫ ∈ Ins2k C ↔ ∃x∃z∃w(y = {{x}} ∧ ⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C)) |
10 | | 3anass 938 |
. . . . . . . . . . . 12
⊢ ((y = {{x}} ∧ ⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C)
↔ (y = {{x}} ∧
(⟪A, B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C))) |
11 | 10 | 2exbii 1583 |
. . . . . . . . . . 11
⊢ (∃z∃w(y = {{x}} ∧ ⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C)
↔ ∃z∃w(y = {{x}} ∧
(⟪A, B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C))) |
12 | | 19.42vv 1907 |
. . . . . . . . . . 11
⊢ (∃z∃w(y = {{x}} ∧ (⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C))
↔ (y = {{x}} ∧ ∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C))) |
13 | 11, 12 | bitri 240 |
. . . . . . . . . 10
⊢ (∃z∃w(y = {{x}} ∧ ⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C)
↔ (y = {{x}} ∧ ∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C))) |
14 | 13 | exbii 1582 |
. . . . . . . . 9
⊢ (∃x∃z∃w(y = {{x}} ∧ ⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C)
↔ ∃x(y = {{x}} ∧ ∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C))) |
15 | 9, 14 | bitri 240 |
. . . . . . . 8
⊢ (⟪y, ⟪A,
B⟫⟫ ∈ Ins2k C ↔ ∃x(y = {{x}} ∧ ∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C))) |
16 | 15 | anbi1i 676 |
. . . . . . 7
⊢ ((⟪y, ⟪A,
B⟫⟫ ∈ Ins2k C ∧
⟪y, ⟪A, B⟫⟫ ∈ Ins3k ◡kD) ↔ (∃x(y = {{x}} ∧ ∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C))
∧ ⟪y, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD)) |
17 | | elin 3220 |
. . . . . . 7
⊢ (⟪y, ⟪A,
B⟫⟫ ∈ ( Ins2k C ∩ Ins3k ◡kD) ↔ (⟪y, ⟪A,
B⟫⟫ ∈ Ins2k C ∧
⟪y, ⟪A, B⟫⟫ ∈ Ins3k ◡kD)) |
18 | | 19.41v 1901 |
. . . . . . 7
⊢ (∃x((y = {{x}} ∧ ∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C))
∧ ⟪y, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD) ↔ (∃x(y = {{x}} ∧ ∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C))
∧ ⟪y, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD)) |
19 | 16, 17, 18 | 3bitr4i 268 |
. . . . . 6
⊢ (⟪y, ⟪A,
B⟫⟫ ∈ ( Ins2k C ∩ Ins3k ◡kD) ↔ ∃x((y = {{x}} ∧ ∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C))
∧ ⟪y, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD)) |
20 | 19 | exbii 1582 |
. . . . 5
⊢ (∃y⟪y,
⟪A, B⟫⟫ ∈ ( Ins2k C ∩ Ins3k ◡kD) ↔ ∃y∃x((y = {{x}} ∧ ∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C))
∧ ⟪y, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD)) |
21 | | excom 1741 |
. . . . 5
⊢ (∃y∃x((y = {{x}} ∧ ∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C))
∧ ⟪y, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD) ↔ ∃x∃y((y = {{x}} ∧ ∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C))
∧ ⟪y, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD)) |
22 | | anass 630 |
. . . . . . . 8
⊢ (((y = {{x}} ∧ ∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C))
∧ ⟪y, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD) ↔ (y =
{{x}} ∧
(∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C)
∧ ⟪y, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD))) |
23 | 22 | exbii 1582 |
. . . . . . 7
⊢ (∃y((y = {{x}} ∧ ∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C))
∧ ⟪y, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD) ↔ ∃y(y = {{x}} ∧ (∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C)
∧ ⟪y, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD))) |
24 | | snex 4112 |
. . . . . . . 8
⊢ {{x}} ∈
V |
25 | | opkeq1 4060 |
. . . . . . . . . 10
⊢ (y = {{x}} →
⟪y, ⟪A, B⟫⟫ = ⟪{{x}}, ⟪A,
B⟫⟫) |
26 | 25 | eleq1d 2419 |
. . . . . . . . 9
⊢ (y = {{x}} →
(⟪y, ⟪A, B⟫⟫ ∈ Ins3k ◡kD ↔ ⟪{{x}}, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD)) |
27 | 26 | anbi2d 684 |
. . . . . . . 8
⊢ (y = {{x}} →
((∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C)
∧ ⟪y, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD) ↔ (∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C)
∧ ⟪{{x}}, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD))) |
28 | 24, 27 | ceqsexv 2895 |
. . . . . . 7
⊢ (∃y(y = {{x}} ∧ (∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C)
∧ ⟪y, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD)) ↔ (∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C)
∧ ⟪{{x}}, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD)) |
29 | 23, 28 | bitri 240 |
. . . . . 6
⊢ (∃y((y = {{x}} ∧ ∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C))
∧ ⟪y, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD) ↔ (∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C)
∧ ⟪{{x}}, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD)) |
30 | 29 | exbii 1582 |
. . . . 5
⊢ (∃x∃y((y = {{x}} ∧ ∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C))
∧ ⟪y, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD) ↔ ∃x(∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C)
∧ ⟪{{x}}, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD)) |
31 | 20, 21, 30 | 3bitri 262 |
. . . 4
⊢ (∃y⟪y,
⟪A, B⟫⟫ ∈ ( Ins2k C ∩ Ins3k ◡kD) ↔ ∃x(∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C)
∧ ⟪{{x}}, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD)) |
32 | 4, 6, 31 | 3bitri 262 |
. . 3
⊢ (⟪A, B⟫
∈ (C
∘k D) ↔ ∃x(∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C)
∧ ⟪{{x}}, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD)) |
33 | | ancom 437 |
. . . . 5
⊢ ((∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C)
∧ ⟪{{x}}, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD) ↔ (⟪{{x}}, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD ∧ ∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C))) |
34 | | vex 2863 |
. . . . . . . 8
⊢ x ∈
V |
35 | | otkelins3kg 4255 |
. . . . . . . 8
⊢ ((x ∈ V ∧ A ∈ V ∧ B ∈ V) →
(⟪{{x}}, ⟪A, B⟫⟫ ∈ Ins3k ◡kD ↔ ⟪x, A⟫
∈ ◡kD)) |
36 | 34, 35 | mp3an1 1264 |
. . . . . . 7
⊢ ((A ∈ V ∧ B ∈ V) → (⟪{{x}}, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD ↔ ⟪x, A⟫
∈ ◡kD)) |
37 | | opkelcnvkg 4250 |
. . . . . . . . 9
⊢ ((x ∈ V ∧ A ∈ V) → (⟪x, A⟫
∈ ◡kD ↔ ⟪A, x⟫
∈ D)) |
38 | 34, 37 | mpan 651 |
. . . . . . . 8
⊢ (A ∈ V →
(⟪x, A⟫ ∈ ◡kD ↔ ⟪A, x⟫
∈ D)) |
39 | 38 | adantr 451 |
. . . . . . 7
⊢ ((A ∈ V ∧ B ∈ V) → (⟪x, A⟫
∈ ◡kD ↔ ⟪A, x⟫
∈ D)) |
40 | 36, 39 | bitrd 244 |
. . . . . 6
⊢ ((A ∈ V ∧ B ∈ V) → (⟪{{x}}, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD ↔ ⟪A, x⟫
∈ D)) |
41 | | eqcom 2355 |
. . . . . . . . . 10
⊢ (⟪A, B⟫ =
⟪z, w⟫ ↔ ⟪z, w⟫ =
⟪A, B⟫) |
42 | 41 | anbi1i 676 |
. . . . . . . . 9
⊢ ((⟪A, B⟫ =
⟪z, w⟫ ∧
⟪x, w⟫ ∈
C) ↔ (⟪z, w⟫ =
⟪A, B⟫ ∧
⟪x, w⟫ ∈
C)) |
43 | 42 | 2exbii 1583 |
. . . . . . . 8
⊢ (∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C)
↔ ∃z∃w(⟪z,
w⟫ = ⟪A, B⟫
∧ ⟪x, w⟫
∈ C)) |
44 | | vex 2863 |
. . . . . . . . . . . . . 14
⊢ z ∈
V |
45 | | vex 2863 |
. . . . . . . . . . . . . 14
⊢ w ∈
V |
46 | | opkthg 4132 |
. . . . . . . . . . . . . 14
⊢ ((z ∈ V ∧ w ∈ V ∧ B ∈ V) →
(⟪z, w⟫ = ⟪A, B⟫
↔ (z = A ∧ w = B))) |
47 | 44, 45, 46 | mp3an12 1267 |
. . . . . . . . . . . . 13
⊢ (B ∈ V →
(⟪z, w⟫ = ⟪A, B⟫
↔ (z = A ∧ w = B))) |
48 | 47 | anbi1d 685 |
. . . . . . . . . . . 12
⊢ (B ∈ V →
((⟪z, w⟫ = ⟪A, B⟫
∧ ⟪x, w⟫
∈ C)
↔ ((z = A ∧ w = B) ∧ ⟪x,
w⟫ ∈ C))) |
49 | | anass 630 |
. . . . . . . . . . . 12
⊢ (((z = A ∧ w = B) ∧
⟪x, w⟫ ∈
C) ↔ (z = A ∧ (w = B ∧
⟪x, w⟫ ∈
C))) |
50 | 48, 49 | syl6bb 252 |
. . . . . . . . . . 11
⊢ (B ∈ V →
((⟪z, w⟫ = ⟪A, B⟫
∧ ⟪x, w⟫
∈ C)
↔ (z = A ∧ (w = B ∧ ⟪x,
w⟫ ∈ C)))) |
51 | 50 | 2exbidv 1628 |
. . . . . . . . . 10
⊢ (B ∈ V →
(∃z∃w(⟪z,
w⟫ = ⟪A, B⟫
∧ ⟪x, w⟫
∈ C)
↔ ∃z∃w(z = A ∧ (w = B ∧ ⟪x,
w⟫ ∈ C)))) |
52 | 51 | adantl 452 |
. . . . . . . . 9
⊢ ((A ∈ V ∧ B ∈ V) → (∃z∃w(⟪z,
w⟫ = ⟪A, B⟫
∧ ⟪x, w⟫
∈ C)
↔ ∃z∃w(z = A ∧ (w = B ∧ ⟪x,
w⟫ ∈ C)))) |
53 | | eeanv 1913 |
. . . . . . . . 9
⊢ (∃z∃w(z = A ∧ (w = B ∧
⟪x, w⟫ ∈
C)) ↔ (∃z z = A ∧ ∃w(w = B ∧
⟪x, w⟫ ∈
C))) |
54 | 52, 53 | syl6bb 252 |
. . . . . . . 8
⊢ ((A ∈ V ∧ B ∈ V) → (∃z∃w(⟪z,
w⟫ = ⟪A, B⟫
∧ ⟪x, w⟫
∈ C)
↔ (∃z z = A ∧ ∃w(w = B ∧ ⟪x,
w⟫ ∈ C)))) |
55 | 43, 54 | syl5bb 248 |
. . . . . . 7
⊢ ((A ∈ V ∧ B ∈ V) → (∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C)
↔ (∃z z = A ∧ ∃w(w = B ∧ ⟪x,
w⟫ ∈ C)))) |
56 | | elisset 2870 |
. . . . . . . . . 10
⊢ (A ∈ V → ∃z z = A) |
57 | 56 | biantrurd 494 |
. . . . . . . . 9
⊢ (A ∈ V →
(∃w(w = B ∧
⟪x, w⟫ ∈
C) ↔ (∃z z = A ∧ ∃w(w = B ∧
⟪x, w⟫ ∈
C)))) |
58 | 57 | bicomd 192 |
. . . . . . . 8
⊢ (A ∈ V →
((∃z
z = A
∧ ∃w(w = B ∧
⟪x, w⟫ ∈
C)) ↔ ∃w(w = B ∧ ⟪x,
w⟫ ∈ C))) |
59 | | opkeq2 4061 |
. . . . . . . . . 10
⊢ (w = B →
⟪x, w⟫ = ⟪x, B⟫) |
60 | 59 | eleq1d 2419 |
. . . . . . . . 9
⊢ (w = B →
(⟪x, w⟫ ∈
C ↔ ⟪x, B⟫
∈ C)) |
61 | 60 | ceqsexgv 2972 |
. . . . . . . 8
⊢ (B ∈ V →
(∃w(w = B ∧
⟪x, w⟫ ∈
C) ↔ ⟪x, B⟫
∈ C)) |
62 | 58, 61 | sylan9bb 680 |
. . . . . . 7
⊢ ((A ∈ V ∧ B ∈ V) → ((∃z z = A ∧ ∃w(w = B ∧
⟪x, w⟫ ∈
C)) ↔ ⟪x, B⟫
∈ C)) |
63 | 55, 62 | bitrd 244 |
. . . . . 6
⊢ ((A ∈ V ∧ B ∈ V) → (∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C)
↔ ⟪x, B⟫ ∈
C)) |
64 | 40, 63 | anbi12d 691 |
. . . . 5
⊢ ((A ∈ V ∧ B ∈ V) → ((⟪{{x}}, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD ∧ ∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C))
↔ (⟪A, x⟫ ∈
D ∧
⟪x, B⟫ ∈
C))) |
65 | 33, 64 | syl5bb 248 |
. . . 4
⊢ ((A ∈ V ∧ B ∈ V) → ((∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C)
∧ ⟪{{x}}, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD) ↔ (⟪A, x⟫
∈ D ∧ ⟪x,
B⟫ ∈ C))) |
66 | 65 | exbidv 1626 |
. . 3
⊢ ((A ∈ V ∧ B ∈ V) → (∃x(∃z∃w(⟪A,
B⟫ = ⟪z, w⟫
∧ ⟪x, w⟫
∈ C)
∧ ⟪{{x}}, ⟪A,
B⟫⟫ ∈ Ins3k ◡kD) ↔ ∃x(⟪A,
x⟫ ∈ D ∧ ⟪x,
B⟫ ∈ C))) |
67 | 32, 66 | syl5bb 248 |
. 2
⊢ ((A ∈ V ∧ B ∈ V) → (⟪A, B⟫
∈ (C
∘k D) ↔ ∃x(⟪A,
x⟫ ∈ D ∧ ⟪x,
B⟫ ∈ C))) |
68 | 1, 2, 67 | syl2an 463 |
1
⊢ ((A ∈ V ∧ B ∈ W) → (⟪A, B⟫
∈ (C
∘k D) ↔ ∃x(⟪A,
x⟫ ∈ D ∧ ⟪x,
B⟫ ∈ C))) |